

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Anomalies in $b \rightarrow s\ell\ell$ and Global Fits

Javier Virto

Universitat de Barcelona

jvirto@ub.edu

Beauty 2020 – September 21st, 2020

Rare B Decays:

- FCNCs (leptonic, rare semileptonic, rare hadronic)
- Lepton-Universality-Violating observables
- Lepton-Flavor-Violating modes
- Lepton-Number-Violating modes

Strong suppression of these decays in the SM \Rightarrow Smoking guns of NP

BUT: FCNCs are no longer "rare" at the LHC!

e.g.
$$N_{events}^{LHCb}(Run 1) = 2398$$
; $N_{events}^{LHCb}(2016) = 2187$ for $B \rightarrow K^* \mu \mu$

And will become "common" decays at Belle-2 and LHCb Upgrade II.

 \rightarrow Opportunity to study **BOTH** *New Physics* and *QCD* in rare decays.

SM is GIM/CKM and loop suppressed (and sometimes helicity):

Competes (potentially) with tree-level BSM contributions...

B mesons mix and decay due to $\mathcal{L}_{Weak} + \mathcal{L}_{BSM?}$

For $m_B \ll M_W, M_{BSM}$ we use an EFT : $\mathcal{L}_{EFT} = \mathcal{L}_{QCD+QED} + \sum_i C_i \mathcal{O}_i$

Class	Flavour structure	Number of Ops.	Other flavours	ADM	Example process
Class I	$\overline{s}b\overline{s}b$	5+3	$\overline{d}b\overline{d}b$	$\hat{\gamma}_{\scriptscriptstyle \mathrm{I}}$	$B_q - \overline{B}_q$ mixing
Class II	$\overline{u}b\overline{\ell} u_{\ell'}$	$(2+3) \times 9$	$\overline{c}b\overline{\ell} u_{\ell'}$	$\hat{\gamma}_{^{\mathrm{II}}}$	$\overline{B}_d \to \pi^+ \mu^- \overline{\nu}$
Class III	$\overline{s}b\overline{u}c$	10+10	$ \overline{s}b \overline{c}u \\ \overline{d}b \overline{u}c \\ \overline{d}b \overline{c}u $	$\hat{\gamma}_{ ext{ini}}$	$B^- ightarrow \overline{D}^0 K^-$
Class IV	$\overline{s}b\overline{s}d$	5+5	$\overline{d}b\overline{d}s\ \overline{b}s\overline{b}d$	$\hat{\gamma}_{^{\mathrm{IV}}}$	$B^- ightarrow \overline{K}^0 K^-$
Class V	$ \overline{s}b\overline{q}q \\ \overline{s}bF,\overline{s}bG \\ \overline{s}b\overline{\ell}\ell $	57+57	db qq db F, db G db ll	$\hat{\gamma}_{ m v}$	$ \begin{array}{c} \overline{B}_d \rightarrow D^+ D^s \\ \overline{B}_d \rightarrow X_s \gamma \\ B^- \rightarrow K^- \mu^+ \mu^- \end{array} $
Class Vb	$\overline{s}b\overline{\ell}\ell',\ell eq\ell'$	$(5+5) \times 6$	$\overline{d}b\overline{\ell}\ell'$	$\hat{\gamma}_{ ext{Vb}}$	$\overline{B}_s \to \mu^- \tau^+$
Class $V\nu$	$\overline{s}b\overline{ u}_\ell u_{\ell'}$	$(1+1) \times 9$	$\overline{d}b\overline{ u}_\ell u_{\ell'}$	zero	$B^- \to K^- \overline{\nu} \nu$

Aebischer, Fael, Greub, Virto 2017

Relevant part of the $W_{eak} E_{ffective} T_{theory}$ for $b \rightarrow s\ell\ell$ transitions:

$$\mathcal{L}_{W} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{\star} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)$$

$$\mathcal{O}_{1} = (\bar{c}\gamma_{\mu}P_{L}b)(\bar{s}\gamma^{\mu}P_{L}c) \qquad \mathcal{O}_{2} = (\bar{c}\gamma_{\mu}P_{L}T^{a}b)(\bar{s}\gamma^{\mu}P_{L}T^{a}c)$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$\mathcal{O}_{9\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \mathcal{O}_{9'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \qquad \mathcal{O}_{10'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

Currently, global determinations of C_9 (and -maybe- C_{10}) seem discrepant with SM predictions, with an important statistical significance.

How did we get here? (a historical digression)

Fits to $b \rightarrow s$ transitions is not a new business

"Towards a Model-Independent Analysis of Rare B Decays", Ali, Giudice, Mannel, 1994

But measurements of key modes ($B_s \rightarrow \mu\mu$, $B \rightarrow K^{(*)}\ell\ell$) awaited LHC(b) These measurements were anticipated by theorists.

Clean observables: A_{FB} zero

Cancellation of hadronic uncertainties in the zero-crossing At LO: $C_9 + \text{Re}(Y(q_0^2)) = -\frac{2M_Bm_b}{q_0^2}C_7^{\text{eff}}$

$$\begin{split} V(q^2) &= \frac{m_B + m_{K^*}}{m_B} \, \xi_{\perp}(q^2) \, + \, \Delta V^{\alpha_5}(q^2) \, + \, \Delta V^{\Lambda}(q^2) \,, \\ A_1(q^2) &= \frac{2E}{m_B + m_{K^*}} \, \xi_{\perp}(q^2) \, + \, \Delta A_1^{\alpha_5}(q^2) \, + \, \Delta A_1^{\Lambda}(q^2) \,, \\ A_2(q^2) &= \frac{m_B}{m_B - m_{K^*}} \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2) \right] \, + \, \Delta A_2^{\alpha_5}(q^2) \, + \, \Delta A_2^{\Lambda}(q^2) \,, \\ A_0(q^2) &= \frac{E}{m_{K^*}} \, \xi_{\parallel}(q^2) \, + \, \Delta A_0^{\alpha_5}(q^2) \, + \, \Delta A_0^{\Lambda}(q^2) \,, \\ T_1(q^2) &= \xi_{\perp}(q^2) \, + \, \Delta T_1^{\alpha_5}(q^2) \, + \, \Delta T_1^{\Lambda}(q^2) \,, \\ T_2(q^2) &= \frac{2E}{m_B} \, \xi_{\perp}(q^2) \, + \, \Delta T_2^{\alpha_5}(q^2) \, + \, \Delta T_2^{\Lambda}(q^2) \,, \\ T_3(q^2) &= \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2) \right] \, + \, \Delta T_3^{\alpha_5}(q^2) \, + \, \Delta T_3^{\Lambda}(q^2) \,, \end{split}$$

Only two independent structures at leading order + power

Clean observables for all q^2 (Cancellation as functions of q^2)

Kruger, Matias 2002

Descotes-Genon, Matias, Ramon, Virto 2012

Also: clean observables at large q^2 Full basis of "all- q^2 -clean" observables

Bobeth, Hiller, van Dyk

Descotes-Genon, Hurth, Matias, Virto 2013

N. Serra, talk at EPS-HEP 2013

Indication for $\mathcal{C}_9^{\mathsf{NP}}\sim-1$

We have combined the recent LHCb measurements of $B \to K^* \mu^+ \mu^-$ observables [18, [20] with other radiative modes in a fit to Wilson coefficients, using the framework of our previous works [15, [21]. We have found a strong indication for a negative NP contribution to the coefficient \mathcal{C}_0 , at 4.5 σ using large-recol data (3.5 σ using both large- and low-recoil data). Our results correspond to \mathcal{C}_0 inside a 68 % C.L. range 2.2 $\leq \mathcal{C}_0 \leq$ 2.8 to be compared with $\mathcal{C}_0^{SH} = 4.07$ at the scale $\mu_0 = 4.8$ GeV. This is the main conclusion of our analysis of LHCb $B \to K^* \mu^+ \mu^-$ measurements.

We also absore a slight profession of far nogetine reluce

Anomalies in $b \rightarrow s\ell\ell$ and Global Fits

A new "twist": Lepton Flavor Non-Universality

$$R_{K} \equiv \frac{\mathcal{B}(B^{+} \to K^{+} \mu \mu)_{[1,6]\text{GeV}^{2}}}{\mathcal{B}(B^{+} \to K^{+} e e)_{[1,6]\text{GeV}^{2}}}; \quad R_{K}^{\text{SM}} = 1; \quad R_{K}^{\text{LHCb 2014}} \simeq 0.75 \pm 0.1$$

Hiller, Kruger 2004; Bobeth, Hiller, Piranishvili 2007; Bordone, Isidori, Pattori 2016; LHCb 2014

not very well bound, especially for the electronic case, so different scenarios of NP could currently explain (15). For example one could entertain the possibility of a sizable and negative effect in C_9 affecting only the muonic mode, $\delta C_9^{\mu} = -1$. In this scenario one obtains $R_K \simeq 0.79$. As a side remark, it is worth emphasizing that such a negative NP contribution to $O_9^{(p)}$ has been argued to be necessary to understand the current $b \rightarrow s\mu\mu$ data set [27]-[30].

From Alonso, Grinstein, Camalich 2014

See also Hiller, Schmaltz 2014; Gosh, Nardecchia, Renner 2014

A new "twist": Lepton Flavor Non-Universality

Consistency of P'_5 and LFNU in 2017 Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017

Fit to LFNU observables only (2017) predicted correct LHCb P'_5 measurements

Javier Virto

Anomalies in $b \rightarrow s\ell\ell$ and Global Fits

September 21st, 2020

Current status of available measurements (2020)

$B_{\rm S} ightarrow \mu^+ \mu^-$	$B \rightarrow X_{\rm s} \mu^+ \mu^-$	$B ightarrow K^* \gamma$	$B \rightarrow X_{\rm S} \gamma$
$B ightarrow { m K} \mu \mu$	$B ightarrow K^* \mu \mu$	$B_{\rm S} o \Phi \mu \mu$	$\Lambda_b o \Lambda \mu \mu$
BRs	AOs	Low q ²	Large q ²
R _K	R _{K*}	LFU (μ)	LFUV (µ vs e)
LHCb	Belle/BaBar	ATLAS	CMS

Latest updates: R_{κ}^{LHCb} , R_{κ}^{Belle} (2019), $B \rightarrow K^* \mu \mu$ (LHCb 2020 [Run 1 + 2016]).

"Anomalies" (as of 2020)

Observable	Experiment	SM prediction	pull
$R_{K}^{[1.1,6]}$	0.85 ± 0.06	1.00 ± 0.01	+2.50
R ^[0.045,1.1]	$0.66\substack{+0.11\\-0.07}$	0.92 ± 0.02	+2.3 <i>o</i>
$R_{K^*}^{[1.1,6]}$	$0.69^{+0.12}_{-0.08}$	1.00 ± 0.01	+2.6 σ
$\langle P_5' \rangle_{[4,6]}$	-0.44 ± 0.12	-0.82 ± 0.08	-2.7σ
$\langle P_5' \rangle_{[6,8]}$	-0.58 ± 0.09	-0.94 ± 0.08	-2.9 <i>σ</i>
${\cal B}^{[2,5]}_{\phi\mu\mu}$	0.77 ± 0.14	1.55 ± 0.33	+2.20
${\cal B}^{[5.8]}_{\phi\mu\mu}$	0.96 ± 0.15	1.88 ± 0.89	+2.2σ

Global fit should accommodate these deviations within all other measurements

A closer look at new measurements of R_k and P'_5 (LHCb 2019, 2020)

More details:

Algeró et al. Addendum to Eur. Phys. J.C 79 (2019)

Some Details on Theory Predictions

Anatomy of $B \rightarrow M_{\lambda} \ell^+ \ell^-$ EFT Amplitudes

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

► Local (Form Factors): $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{S} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

► Non-Local : $\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4x \ e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T \{ \mathcal{J}^{\mu}_{em}(x), \mathcal{C}_i \mathcal{O}_i(0) \} | \bar{B}(q+k) \rangle$

Local form factors

- Two main approaches: (1) Lattice QCD (large q^2) (2) LCSRs (low q^2)
- ► Two approaches to LCSRs, in terms of (1) K* LCDAs (2) B LCDAs
- \triangleright q^2 dependence can be parametrized model-independently

Javier Virto

September 21st, 2020

Non-local Form Factors: OPE + dispersion relations

$$\mathcal{H}_{\lambda,x}(q^2) = \mathcal{H}_{\lambda,x}^{\text{OPE}}(q_0^2 < 0) + (q^2 - q_0^2) \int_{s_{\text{th}}}^{\infty} dt \, \frac{\rho_{\lambda,x}(t)}{(t - q^2 - i\epsilon)(t - q_0^2)}$$

- $\mathcal{H}^{\mathrm{OPE}}_{\lambda,\chi}(q_0^2)$: Theory e.g. Khodjamirian et al 2010, 2012; Asatrian, Greub, Virto 2019
- $\rho_{\lambda,c}(t): B \to K^{(*)}J/\psi, B \to K^{(*)}\psi(2S), B \to K^{(*)}D\bar{D}, ...$

$$\cdot \rho_{\lambda,sb}(t) : B \to K^{(*)}\phi, B \to K^{(*)}\overline{K}K, ...$$

• $\rho_{\lambda,ud}(t): B \to K^{(*)}\rho, B \to K^{(*)}\omega, B \to K^{(*)}\pi\pi, B \to K^{(*)}\pi\pi\pi, \dots$

Charm contribution \longrightarrow numerically leading

From OPE region to physical region requires DATA ($B \rightarrow K^{(*)} X_{1--}$)

 \Rightarrow Current fit uses QCDF (BFS) + KMPW correction + nuisances for PCs.

BFS = Beneke, Feldmann, Seidel 2001; KMPW = Khodjamirian et al 2010

Non-local Form Factors: Consistency Tests

Algeró et al. Addendum to Eur.Phys.J.C 79 (2019)

No evidence for a q^2 dependence pointing towards a missing LD effect, but interesting to see what happens with more and more precise data.

Updated Fits

Fit: Statistical Approach

 $\chi^{2}(C_{i}) = [O_{\exp} - O_{th}(C_{i})]_{j} [Cov^{-1}]_{jk} [O_{\exp} - O_{th}(C_{i})]_{k}$

- $Cov = Cov^{exp} + Cov^{th}$
- Cov^{exp} is provided by LHCb
- · Calculate Covth: correlated multigaussian scan over all nuisance parameters
- Covth depends on C_i: Must check this dependence

For the Fit:

- Minimise $\chi^2 \rightarrow \chi^2_{\min} = \chi^2(C_i^0)$ (Best Fit Point = C_i^0)
- + Confidence level regions: $\chi^2(\mathcal{C}_i) \chi^2_{\min} < \Delta \chi_{\sigma,n}$
- Compute pulls by inversion of the above formula

Some results of the fit: 1D

Algeró et al. Addendum to Eur. Phys. J.C 79 (2019)

		All				LFUV		
1D Hyp.	Best fit	$1 \sigma/2 \sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	Best fit	1 σ/ 2 σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{ m NP}$	-1.03	[-1.19, -0.88] [-1.33, -0.72]	6.3	37.5 %	-0.91	[-1.25, -0.61] [-1.63, -0.34]	3.3	60.7%
$\mathcal{C}_{9\mu}^{\rm NP}=-\mathcal{C}_{10\mu}^{\rm NP}$	-0.50	[-0.59, -0.41] [-0.69, -0.32]	5.8	25.3%	-0.39	[-0.50, -0.28] [-0.62, -0.17]	3.7	75.3%
$\mathcal{C}_{9\mu}^{\rm NP}=-\mathcal{C}_{9'\mu}$	-1.02	[-1.17, -0.87] [-1.31, -0.70]	6.2	34.0%	-1.67	[-2.15, -1.05] [-2.54, -0.48]	3.1	53.1%
$\mathcal{C}_{9\mu}^{ m NP}=-3\mathcal{C}_{9e}^{ m NP}$	-0.93	[-1.08, -0.78] [-1.23, -0.63]	6.2	33.6 %	-0.68	[-0.92, -0.46] [-1.19, -0.25]	3.3	60.8%

TABLE VII. Most prominent 1D patterns of NP in $b \rightarrow s\mu^+\mu^-$ transitions (state-of-the-art fits as of March 2020). Here, Pull_{SM} is quoted in units of standard deviation and the *p*-value of the SM hypothesis is 1.4% for the fit "All" and 12.6% for the fit LFUV.

p-values have decreased in general due to decrease in experimental uncertainties

Some results of the fit: 6D

Algeró et al. Addendum to Eur. Phys. J.C 79 (2019)

	$\mathcal{C}_7^{\mathrm{NP}}$	$C_{9\mu}^{\rm NP}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	${\cal C}_{10'\mu}$
Best fit	+0.00	-1.13	+0.20	+0.00	+0.49	-0.10
1 σ	[-0.02, +0.02]	[-1.30, -0.96]	[+0.05, +0.37]	[-0.01, +0.02]	[+0.04, +0.95]	[-0.33, +0.14]
2σ	[-0.03, +0.04]	[-1.46, -0.78]	[-0.09, +0.57]	[-0.03, +0.04]	[-0.39, +1.45]	[-0.55, +0.41]

TABLE IX. 1 and 2σ confidence intervals for the NP contributions to Wilson coefficients in the 6D hypothesis allowing for NP in $b \rightarrow s\mu^+\mu^-$ operators dominant in the SM and their chirally-flipped counterparts, for the fit "All" (state-of-the-art as of March 2020). The Pull_{SM} is 5.8 σ and the *p*-value is 46.8%.

 $C_{9\mu}$ stands out since 2013

Some results of the fit: 2D

Algeró et al. Addendum to Eur. Phys. J.C 79 (2019)

		All		L	FUV	
2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\overline{(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})}$	(-0.98,+0.19)	6.2	39.8 %	(-0.31,+0.44)	3.2	70.0%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'})$	(-1.04,+0.01)	6.0	36.5%	(-0.92,-0.04)	3.0	57.4%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.14, +0.55)	6.5	47.4%	(-1.86, +1.20)	3.5	81.2%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.17,-0.33)	6.6	50.3%	(-1.87,-0.59)	3.7	89.6%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.09,-0.25)	6.0	36.5%	(-0.72, +0.19)	2.9	54.5%
Hyp. 1	(-1.10,+0.28)	6.5	48.9%	(-1.69,+0.29)	3.5	82.4%
Hyp. 2	(-1.01,+0.07)	5.9	33.7 %	(-1.95, +0.22)	3.1	64.3%
Hyp. 3	(-0.51, +0.10)	5.4	24.0%	(-0.39,-0.04)	3.2	69.9%
Hyp. 4	(-0.52, +0.11)	5.6	26.4%	(-0.46, +0.15)	3.4	77.9%
Hyp. 5	(-1.17,+0.23)	6.6	51.1%	(-2.05,+0.50)	3.8	91.9%

TABLE VIII. Most prominent 2D patterns of NP in $b \rightarrow s\mu^+\mu^-$ transitions (state-of-the-art fits as of March 2020). The last five rows correspond to Hypothesis 1: $(\mathcal{C}_{9\mu}^{NP} - \mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{ND} = \mathcal{C}_{10'\mu})$, 2: $(\mathcal{C}_{9\mu}^{NP} - \mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{NP} = -\mathcal{C}_{10'\mu})$, 3: $(\mathcal{C}_{9\mu}^{NP} - \mathcal{C}_{10\mu}^{NP}, \mathcal{C}_{9'\mu} = \mathcal{C}_{10'\mu})$, 4: $(\mathcal{C}_{9\mu}^{NP} - \mathcal{C}_{10\mu}^{NP}, \mathcal{C}_{9'\mu} = \mathcal{C}_{10'\mu})$, and 5: $(\mathcal{C}_{9\mu}^{NP}, \mathcal{C}_{9'\mu} = -\mathcal{C}_{10'\mu})$.

Several "good" scenarios, all featuring $C_{9\mu}$.

Some results of the fit: 2D

Algeró et al. Addendum to Eur. Phys. J.C 79 (2019)

LHCb dominates de fits

Other interesting scenarios arise

Algeró et al. Addendum to Eur.Phys.J.C 79 (2019)

Crivellin, Greub, Müller, Saturnino

$b \rightarrow c$ anomaly induces $b \rightarrow s$ anomalies

Some future improvements

Form factors for unstable mesons (e.g., K^*): width effects

\Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$ (increasing anomalies)

Javier Virto

September 21st, 2020

Constrain non-local effect with $B \to K^* \psi_n$ | Use interresonance $B \to K^* \ell \ell$ DATA

Non-local Form Factors: New OPE calculations of charm-loop effects

Gubernari, van Dyk, Virto, to appear

factorizabl			
Tactorizabi	e contr.	0.27	0.27
$B \to K\ell\ell$	$ ilde{\mathcal{A}}$	$-0.09^{+0.06}_{-0.07}$	$(1.9^{+0.6}_{-0.6}) \cdot 10^{-4}$
	$ ilde{\mathcal{V}}_1$	$0.6^{+0.7}_{-0.5}$	$(1.2^{+0.4}_{-0.4}) \cdot 10^{-3}$
$B\to K^*\ell\ell$	$\tilde{\mathcal{V}}_2$	$0.6^{+0.7}_{-0.5}$	$(2.1^{+0.7}_{-0.7}) \cdot 10^{-3}$
	$\tilde{\mathcal{V}}_3$	$1.0^{+1.6}_{-0.8}$	$(3.0^{+1.0}_{-1.0}) \cdot 10^{-3}$

Slide from N.Gubernari's PhD defense

Subleading contributions to non-local FFs might be much smaller than currently assumed!

Summary and comments:

- $\cdot \ b \rightarrow s \ell \ell$ anomalies are alive and in good shape after LHCb 2019/2020 analyses
- Despite psychological concerns, NP fit is good and SM pull is high
- Decrease of significance of certain tensions (e.g. R_K or P'_5) might be good for NP
- A few different scenarios stand out. Consistent with 2013. Need more data to discern.
- Efforts on the QCD side less popular but terribly important
- · Data-driven determination of hadronic effects promising and might be crucial
- In this context EXPERIMENT can also contribute immensely