

Experimental Program for a Super Tau-Charm Factory

Xiao-Rui Lyu (xiaorui@ucas.ac.cn)

University of Chinese Academy Sciences

(On behalf of the STCF working group)

Dedicated Tau-Charm Factories

BEAUTY 2020, online

Xiao-Rui LYU

2

Fruitful BEPCII/BESIII Results

BEAUTY 2020, online

Xiao-Rui LYU

τ -*c* facility in China

- BEPCII/BESIII have run 10 years, and are playing a leading role in tau-charm physics area.
- Limited by length of storage ring, no space and potential for major upgrade.
- Physics study limited by the Statistics (luminosity), collision energy up to 4.9 GeV ·····
- □ Many of the physics can be covered by ISR at Belle II
- BEPCII/BESIII will end her mission in 5 8(?) years

A Super Tau-Charm Factory (STCF) is the nature extension and a viable option for a post-BEPCII HEP project in China

Broad Physics at τ -charm Energy Region

• BES

- Y(2175) resonance
- Mutltiguark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states

4

- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with $D_{(s)}$ mesons •

 \sqrt{s} (GeV)

6

- f_{D} and f_{Ds} •
- D₀-D₀ mixing and CPV
- Charmed baryons •

Unique features : Rich of resonances, Threshold characteristics, Quantum Correlation, Low-background, Kinematic constrains

=σ(e⁺e⁻→hadron)

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

5

4

3

2

BEPCII and STCF in China

BEPCII

- Peak luminosity 0.6-1×10³³ cm⁻²s⁻¹ at 3.773 GeV
- **Energy range** $E_{cm} = 2 4.6 \text{ GeV}$
- **No Polarization**

Designed STCF

- **D** Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV
- **D** Energy range $E_{cm} = 2-7 \text{ GeV}$
- Potential to increase luminosity and realize beam polarization

1 ab⁻¹ data expected per year

Xiao-Rui LYU

A CLOBYT OF STREET

Machine parameters

Parameters	Phase1	Phase2
Circumference/m	600~800	600~800
Optimized Beam Energy/GeV	2.0	2.0
Beam Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2.0
Emittance $(\varepsilon_x/\varepsilon_y)/nm \cdot rad$	6/0.06	5/0.05
β Function (<i>β</i>[*])/mm (<i>β</i> [*])/mm	60/0.6	50/0.5(estimated)
Full Collision Angle 20/mrad	60	60
Tune Shift ξy	0.06	0.08
Hourglass Factor	0.8	0.8
Aperture and Lifetime	15σ, 1000s	15σ, 1000s
Luminosity @Optimized Energy/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0

STCF Detector

Inner Tracker

- ➤ ~0.15% X0 / layer
- $\succ \sigma xy \sim 50 \,\mu m$

Out Tracker

- > σxy~130 um, σp/p~0.5%@1GeV/c
- \rightarrow dE/dx ~ 6%

D PID system

> π/K (K/p) 3-4 σ separation up to 2 GeV/c

D Electromagnetic Calorimeter

- ➢ Range: 0.02 − 3 GeV
- Resolution (1 GeV): 2.5% (barrel) and 4% (endcap)

D Muon system

 \blacktriangleright π suppression power: >10 and lower to 0.4 GeV/c

~ 6 m

Physics @ STCF

Precise test of SM

- R Scan, Hadron form factor (nucleon, Λ, π), $\Delta \alpha_{\text{QED}}$, a_u
- tau lepton decays, lepton universality test
- CKM matrix, Decay constants (f_D/f_{Ds}) , form factors
- D mixing, CPV and strong phase

New physics(tiny/forbidden in SM)

- Rare charmonium decays : LFV, LNV, BNV...
- Rare charm decay : FCNC, LFV, LNV, invisible
- Rare tau decay : FCNC, LFV, LNV
- Rare light meson decay : $\eta/\eta'/\omega/\phi$

> <u>CP Violation</u>

- CPV in tau or charm: tiny in SM
- CP violation in hyperon and *c*-ed hadrons

hadron physics

- hadron spectroscopy
- hadron-pair threshold effects
- Glueball: direct test of QCD at low energy
- Multiquark, exotics, hybrids.....
- Charmonium(-like) spectroscopy
- Charmed baryon decays
 - **Exotic phyics**
 - Light dark matter :
 light Higgs boson(a₀), U boson
 - New interactions
 - rich of physics program, unique for physics with *c* quark and τ leptons,
 - important playground for study of QCD, exotic hadrons and search for new physics.

Xiao-Rui LYU

Data samples

Data samples with 1 ab⁻¹ integral luminosity

			Belle II					
Data Set	process	$\sigma/{\rm nb}$	N	ST eff./ $\%$	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	_	_	1.0×10^{12}	_	_	_	_	_
$\psi(2S)$	_	_	3.0×10^{11}	_	_	_	_	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	$3.6 imes 10^9$	10.8	0.78×10^9	—	1.4×10^9	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^9	9.4	0.53×10^9	_	7.7×10^{8}	_
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	—	2.5×10^8	_
_+	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^9	_	_	0.9	$0.9 imes 10^9$	_
au :	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^{9}	_	_	—	_	_
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	5.5×10^8	5.0	0.55×10^8	_	1.6×10^8	$3.6 \times 10^{4*}$

The luminosity is 1.0 ab⁻¹. * process $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$.

- Belle-II (50/ab) has 50~100 times more statistics
- STCF is expected to have higher detection efficiency
- STCF has low backgrounds for productions at threshold

Charmonium (Like) Spectroscopy

Charmonium (Like) states are prominently produced in e⁺e⁻ collision and B

decays,

Thus are complementary between τ -C factory and B factory.

Charmonium (Like) Spectroscopy at STCF

background than B Factory

Xiao-Rui LYU

Facilities for Charm Study

- LHCb: huge x-sec, boost, 9fb⁻¹ now (x40 current B-factories)
- B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- τ-C factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique
 - $\square STCF:$
 - 4×10^9 pairs of $D^{\pm,0}$ and 10^8 Ds pairs per year
 - -10^{10} charm from Belle II/year
 - Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D , f_{Ds} , CKM matrix...)
 - $D^0 \overline{D}^0$ mixing, CPV
 - Rear decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)
 - Charmed baryons (J^{PC}, Decay modes, absolute BF)
 - Light meson and hyperon spectroscopy studied in charmed hadron decays

Features in studying charm hadron decays

	STCF	Belle II	LHCb
Production yields	**	****	****
Background level	****	***	**
Systematic error	****	***	**
Completeness	****	***	*
(Semi)-Leptonic mode	****	****	**
Neutron/K _L mode	****	***	☆
Photon-involved	****	****	*
Absolute measurement	****	***	☆

- Most are precision measurements, which are mostly dominant by the systematic uncertainty
- □ STCF has overall advantages in several studies

Precision measurement of CKM elements

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- □ A precise test of EW theory
- □ New physics beyond SM?

A direct measurement of V_{cd(s)} is one of the most important task in charm physics

D_(s) (Semi-)Leptonic decay

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{m_{D_{(s)}^+}^2}\right)^2$$

Semi-Leptonic:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2$$

Directly measurement : $|V_{cd(s)}| \times f_{D(s)}$ or $|V_{cd(s)}| \times FF$

- $\square \text{ Input } f_{D(s)} \text{ or } f^{k(\pi)}(0) \text{ from } LQCD \implies |V_{cd(s)}|$
- $\square \text{ Input } |V_{cd(s)}| \text{ from a global fit } \Rightarrow f_{D(s)} \text{ or } f^{k(\pi)}(0)$
- Validate LQCD calculation of Input f_{B(s)} and provide constrain of CKMunitarity

D_(s) Leptonic decay

				:
	BESIII	STCF	Belle II	
Luminosity	2.93 fb ⁻¹ at 3.773 GeV	1 ab^{-1} at 3.773 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst} [8]	0.28% _{stat}	_	
f_{D^+} (MeV)	2.6% _{stat} 0.9% _{syst} [8]	0.15% _{stat}	Theory: 0.2%	(0.1% expected)
$ V_{cd} $	$2.6\%_{\text{stat}} 1.0\%^*_{\text{syst}} [8]$	0.15% _{stat}		(
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	20% _{stat} 10% _{syst} [9]	$0.41\%_{stat}$	_	
$\frac{\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D^+ \to \mu^+ \nu_{\mu})}$	21% _{stat} 13% _{syst} [9]	$0.50\%_{stat}$	_	
Luminosity	3.2 fb ⁻¹ at 4.178 GeV	1 ab ⁻¹ at 4.009 GeV	50 ab ⁻¹ at $\Upsilon(nS)$:
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8% _{stat} 2.7% _{syst} [10]	0.30% _{stat}	0.8%stat 1.8%syst	
$f_{D_s^+}$ (MeV)	1.5% _{stat} 1.6% _{syst} [10]	0.15% _{stat}	Theory 0.2%	(0.1% expected)
$ V_{cs} $	1.5% _{stat} 1.6% _{syst} [10]	0.15% _{stat}		
$f_{D_{s}^{+}}/f_{D^{+}}$	3.0% _{stat} 1.5% _{syst} [10]	0.21% _{stat}	_	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)$	$2.2\%_{\rm stat} 2.6\%_{\rm syst}^{\dagger}$	0.24% _{stat}	$0.6\%_{\rm stat} 2.7\%_{\rm syst}$	
$f_{D_s^+}$ (MeV)	$1.1\%_{\mathrm{stat}} 1.5\%_{\mathrm{syst}}^{\dagger}$	0.11% _{stat}	Theory: 0.2%	(0.1% expected)
$ V_{cs} $	$1.1\%_{\mathrm{stat}}1.5\%_{\mathrm{syst}}^{\dagger}$	0.11% _{stat}	_	
$\overline{f}_{D_s^+}^{\mu\& au}$ (MeV)	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	0.09% _{stat}	0.3%stat 1.0%syst	
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{stat}$ $1.0\%_{syst}$ [†]	$0.09\%_{stat}$	_	
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu})}$	$3.6\%_{stat}3.0\%_{syst}^{\dagger}$	0.38% _{stat}	0.9%stat 3.2%syst	

* assuming Belle II improved systematics by a factor 2

Stat. uncertainty is closed to theory precision Sys. is challenging

Xiao-Rui LYU

Lepton Flavor Universality

LFU is critical to test the SM and search for new physics beyond the SM

9

Purely Leptonic:

Semi-Leptonic:

$$R_{D_{(s)}^{+}} = \frac{\Gamma(D_{(s)}^{+} \to \tau^{+} \nu_{\tau})}{\Gamma(D_{(s)}^{+} \to \mu^{+} \nu_{\mu})} = \frac{m_{\tau^{+}}^{2} \left(1 - \frac{m_{\tau^{+}}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}}{m_{\mu^{+}}^{2} \left(1 - \frac{m_{\mu^{+}}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}}.$$

$$R_{\mu/e} = \frac{\Gamma_{D \to h\mu\nu\mu}}{\Gamma_{D \to he\nue}}$$

- Large uncertainty from BESIII, dominant by statistically limited
- STCF would improve them significantly

Determination of γ/ϕ_3 angle

The cleanest way to extract γ is from **B** \rightarrow **DK** decays:

- Interference between tree-level decays; theoretically clean
- current uncertainty $\sigma(\gamma) \sim 5^{\circ}$
- however, theoretical relative error $\sim 10^{-7}$ (very small!)
- □ Information of *D decay strong phase* is needed
 - Best way is to employ quantum coherence of DD production at threshold

Determination of γ/ϕ_3 angle

Three methods for exploiting interference (choice of D⁰ decay modes):

□ Gronau, London, Wyler (GLW): Use CP eigenstates of D^{(*)0} decay,

e.g. $D^0 \rightarrow K_s \pi^0$, $D^0 \rightarrow \pi^+ \pi^-$

□ Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$

− With 1 ab⁻¹ @ STCF : $\sigma(\cos\delta_{K\pi}) \sim 0.007$; $\sigma(\delta_{K\pi}) \sim 2^{\circ} \rightarrow \sigma(\gamma) < 0.5^{\circ}$

- □ Giri, Grossman, Soffer, Zupan (GGSZ): Use Dalitz plot analysis of 3-body D⁰ decays, e.g. $K_s \pi^+ \pi^-$; high statistics; need precise Dalitz model
 - STCF reduces the contribution of D Dalitz model to a level of $\sim 0.1^{\circ}$

$D^0 - \overline{D}^0$ mixing and CPV

STCF provide a unique place for the study of $D^0 - \overline{D}^0$ mixing and CPV by means of quantum coherence of D^0 and \overline{D}^0 produced through

$$\psi(3770) \to (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \psi(4140) \to D^0 \bar{D}^{*0} \to \pi^0 (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \gamma (D^0 \bar{D}^0)_{\text{CP}=+}$$

□ Mixing rate R_M = x²+y²/2 ~10⁻⁵ with 1 ab⁻¹ data at 3.773 GeV via same charged final states (K[±]π[∓])(K[±]π[∓]) or (K[±]l[∓]v)(K[±]l[∓]v)
 □ Mixing parameters and CPV parameters with 1 ab⁻¹ data at 4009 MeV via coherent (C-even and C-odd) and incoherent process
 □ ΔA_{CP}~10⁻³ for KK and ππ channels

D⁰ mixing and CPV parameters

- Three kinds of $D^0 \overline{D}^0$ samples can be used @4009MeV
 - Quantum-incoherent flavor specific D^0 samples: $D^{*+} \rightarrow D^0 \pi^+$
 - Help to improve precision of strong-phase difference measurement
 - Be used to constrain the charm mixing and CPV parameters
 - Quantum-coherent C-even $D^0\overline{D}^0$ samples: $D^{*0}\overline{D}^0 \to D^0\overline{D}^0\gamma$
 - Be used to perform charm mixing and CPV parameters measurements
 - The interference effect, containing mixing and CPV, is doubled compare to incoherent case
 - Help to constrain the strong-phase difference and CP fraction measurements
 - Quantum-coherent C-odd $D^0\overline{D}^0$ samples: $D^{*0}\overline{D}^0 \to D^0\overline{D}^0\pi^0$
 - Same as $D^0\overline{D}^0$ samples @3770, improve precision of strong-phase difference measurements and CP fraction measurements

Precision estimation

	1/ab @4009 MEV (only QC QC+incoherent) (preliminary estimation)		BELLEII(50/ab) [PTEP2019, 123C01]	LHCb((SL Pr [arXiv:180	50/fb) rompt) _{08.08865]}
<i>x</i> (%)	0.036	0.035	0.03	0.024	0.012
y(%)	0.023	0.023	0.02	0.019	0.013
r _{CP}	0.017	0.013	0.022	0.024	0.011
$\alpha_{CP}(^{\circ})$	1.3	1.0	1.5	1.7	0.48

- > The only QC results: contains $D^0 \to K_S \pi \pi, D^0 \to K^- \pi^+ \pi^0$ and general CP tag decay channels
- The QC+incoherent results: combines coherent and incoherent D⁰ meson samples
- > The BELLE II and LHCb results only contain incoherent $D^0 \rightarrow K_S \pi \pi$ channel

Charm rare decays

- ➢ FCNC suppressed by GIM mechanism in SM:
 - Short distance : interested, computable by pQCD, directly test SM $\mathcal{B}_{D^0 \to X^0_u e^+ e^-} \simeq 8 \cdot 10^{-9}$
 - $\mathcal{B}_{D^+ \to X_u^+ e^+ e^-} \simeq 2 \cdot 10^{-8}$
 - Long distance effect can enhance the rate to 10⁻⁶
 ~10⁻⁷, dominantly.
 - Allow with sizeable decay rate in NP
 - 1ab⁻¹ @ STCF can achieve the sensitivity to 10⁻⁸~10⁻⁹, tested SM strictly
 - Can discriminate NP from SM by measuring :
 - $D \rightarrow Vl^+l^-$: AFB asymmetry
 - D→Pl⁺l⁻ : line shape of dilepton mass, to reveal the interference effect between long-distance and FCNC weak amplitude (NP amplitude);
- LFV, LNV and BNV decays are forbidden in the SM. However, NP models can allow at sizable levels.
 - STCF: $10^{-8} \sim 10^{-9} \rightarrow$ stringent constrains to NP models

More detail MC simulation are necessary!

Precision study of the *c*-ed baryon decay

Era of precision study of the charmed baryon (Λ_c , Ξ_c and Ω_c) decays to help developing more reliable QCD-derived models in charm sector

□ Hadronic decays:

to explore as-yet-unmeasured channels and understand full picture of intermediate structures in B_c decays, esp., those with neutron/ Σ/Ξ particles

- Semi-leptonic decays: to test LQCD calculations and LFU
- CPV in charmed baryon: BP and BV two-body decay asymmetry, charge-dependent rate of SCS
- Charmed Baryons Spectroscopy : (63 P-wave states from QM, less than 20 are observed!)
- □ Rare decays: LFV, BNV, FCNC

STCF will provide very precise measurements of their overall decays, up to the unprecedented level of 10⁻⁶ ~10⁻⁷

A CONTRACTOR

τ Lepton Physics

- □ X sec grows from 0.1nb near threshold to 3.5 nb at 4.25 GeV
 - 1×10^8 tau pairs/year at threshold (0.1 nb)
 - 3.5×10⁹ tau pairs/year at 4.25 GeV (3.5 nb)
 - $10^{10} \tau$ pairs per year for Belle II (1 nb)
- Highlighted Physics program
 - τ properties : m_{τ} , $(g-2)_{\tau}/2$
 - SM properties : universality test, Michel parameters, α_{s} , V_{us}
 - CPV test : $\tau^- \rightarrow K_S^0 \pi^- v_{\tau}$, T-odd triple product in polarization beam
 - LFV : $\tau \rightarrow \ell \gamma$, $\ell \ell \ell$, ℓh
- Comparison to Belle II
 - Threshold effect is important for controlling and understanding background
 - Relatively high efficiency
 - Longitudinal polarization of the initial beams will significantly increase sensitivity in searches for CPV in lepton decays.

LFV decay $\tau \rightarrow \gamma \mu$

- The charged LFV processes can occur through oscillations in loops
- Immeasurable small rates (10⁻⁵⁴-10⁻⁴⁹) for all the LFV μ and τ decays

$$\mathfrak{B}(l_1 \to l_2 \gamma) \propto \alpha (\frac{\Delta m^2}{m_W^2})^2$$

• Many extensions of SM naturally introduces cLFV at order $\sim 10^{-7} - 10^{-10}$ (an crucial place to test BSM)

B Factory : D Dominant background : $\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$ with ISR **D** BaBar : $B(\tau^- \rightarrow \gamma \mu^-) < 4.5 \times 10^{-8}$

Belle II with 50 ab⁻¹ : $B(\tau^- \rightarrow \gamma \mu^-) < 6 \times 10^{-9}$

STCF with 10 ab⁻¹: $B(\tau^- \rightarrow \gamma \mu^-) < 7 \times 10^{-9}$

CPV in τ decay

- There is no direct CP violation in hadronic tau decays at the tree level within SM
- □ The CPV source in $K^0 \overline{K}^0$ mixing produces a difference in tau decay rate

In theory:
$$A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$$

BaBar experiment: $A_{CP}(\tau^- \to K_S \pi^- \nu [\ge 0\pi^0]) = (-0.36 \pm 0.23 \pm 0.11)\%$

 2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included

□ The sensitivity of decay rate asymmetry in $\tau \to K_s \pi \nu$ decays at $\sqrt{s} = 4.26$ GeV with 1 ab⁻¹ integrated luminosity is tested based on MC study with no CP violation: a preliminary sensitivity is evaluated to be : $A_{CP} = (0.009 \pm 0.059)\%$

STCF can provide a crucial validation since the background can be well controlled

CPV in τ decays with polarized beam

New T-odd observables

Use T-odd rotationally invariant triple products in >=2 hadrons

such as $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} / k^- \pi^0 \nu_{\tau}$, $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau} / K^- \pi^+ \pi^- \nu_{\tau}$

Figure of Merits

merit = luminosity $\times \bar{w}_Z \times$ total cross section \propto luminosity $\times (w_1 + w_2)$ $\times \sqrt{1 - a^2}a^2(1 + 2a)$,

Y. S. TSAI, PRD 51 (1995) 3172

BESIII @ $4.25 (10^{33} \text{cm}^{-2} \text{s}^{-1})$ FOM=1STCF @ $4.25 (10^{35} \text{cm}^{-2} \text{s}^{-1})$ FOM=100SuperKEKB @ $(8x10^{35} \text{cm}^{-2} \text{s}^{-1})$ FOM=52

Experimental challenge: reconstruction of τ (No secondary vertices)

A CODAT OF THE

CPV in hyperon decays

- In 1958, Okubo: CPV in hyperon-antihyperon allows ⇒ "Okubo effect" (Direct CPV) Phys. Rev. 109, 984 (1958).
- In 1959, Pais: extended Okubo's proposal to asymmetry parameters in Λ and Λ decays. Phys. Rev. Lett. 3, 242 (1959).
- In the 1980s, a number of calculations were made. CKM predictions, CPV in Λ: 10⁻⁴~10⁻⁵
- □ One example: Phys. Rev. D34, 833 (1986).

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the CP-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and leftright-symmetric models of CP nonconservation.

Spin polarization of Λ in $J/\psi \rightarrow \Lambda \overline{\Lambda}$

Nature Phys. 15, 631 (2019)

1.31 B J/ ψ events Quantum correlation in Λ pair

Parameters	This work	Previous results
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
$\Delta \Phi$	$(42.4\pm 0.6\pm 0.5)^\circ$	_
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 ¹⁶
$\bar{\alpha}_0$	$-0.692\pm 0.016\pm 0.006$	_
A _{CP}	$-0.006\pm0.012\pm0.007$	0.006 ± 0.021 ¹⁶
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-

CPV test
$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

Xiao-Rui LYU

Λ hyperon A_{CP} sensitivities

- □ 4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$
 - Luminosity optimized at J/ψ resonance
 - Luminosity of STCF: × 100
 - 2 3 years data taking
 - No polarization beams are needed
- Beam energy trick
 - \Rightarrow small beam energy spread
 - \Rightarrow J/ ψ cross-section: \times 10 \Rightarrow $A_{CP} \sim 10^{-5}$?
- □ Challenge: Systematics control, spin procession effect in magnet

R and QCD Physics

- Detailed study of exclusive processes $e^+ e^- \rightarrow (2-10)h$, $h=\pi,K,\eta,p...$ Scan between 2-7GeV and ISR $\sqrt{s} < 2GeV$
 - Meson Spectroscopy
 - Intermediate dynamics
 - Search for exotic states (tetraquarks, hybrids, glueballs)
 - Form factors
- High precision determination of R= $\sigma(e^+ e^- \rightarrow hadrons)/\sigma(e^+ e^- \rightarrow \mu^+ \mu^-)$ at low energies and fundamental quantities
 - $(g_{\mu}-2)/2$, 92% from < 2GeV, 7% from 2-5GeV
 - $-\alpha(M_z)$, 19.0% from < 2GeV, 18.1% from 2-5GeV
 - QCD parameters (charm quark masses)
- Inclusive cross section $e^+ e^- \rightarrow h + X$
 - QCD parameters (α_s , quark and gluon condensates)
 - Fragmentation functions; MLLA/LPHP prediction
 - Spin alignment of vector
- Two photon Physics
 - Measurement of $\Gamma_{\gamma\gamma}$ for $J^{PC} = 0^{-+}, 0^{++}, 2^{-+}, 2^{++}$ states
 - Study of $\gamma\gamma^* \rightarrow R$, $R = 1^{++}$
 - Transition Form Factors in $\gamma^* \gamma^* \rightarrow R$
 - Cross section of $\gamma\gamma$ \rightarrow hadrons

Impact on $(g_{\mu}-2)/2$

At present, the anomalous magnetic moment of the muon $a_{\mu} = (g - 2)_{\mu}/2$ are known with an uncertainty of about one half per million!

High Luminosity of STCF will largely improve the SM precisions

The threshold production of baryon pair

The Born cross section of the reaction $e^+e^- \rightarrow \gamma^* \rightarrow B\bar{B}$ can be parameterized in terms of electromagnetic form factors:

$$\sigma_{B\bar{B}}(q) = rac{4\pi lpha^2 C eta}{3q^2} [|G_M(q)|^2 + rac{1}{2\tau} |G_E(q)|^2]$$

- Baryon velocity $\beta = \sqrt{1 4m_B^2 c^4/q^2}, \tau = q^2/(4m_B^2 c^4)$
- ▶ For charged *B*, the Coulomb factor C will results in a non-zero cross section at threshold

Form factor reflects spatial distributions of **electric charge and current** inside the nucleon

100x more statistics at STCF will much enhance the understandings of these 'unexpected' threshold enhancement!

Tentative Plan

													2030-	2041-
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2040	2042
Form Group														
CDR														
TDR														
Construction														
In operation														
Upgrade														

R&D budget: 200M RMB Total budget: 4B RMB (estimated in 2014)

单位: 亿元				
eLinac	4.0+1.0 (阻尼环)			
Electron ring	7.0			
Positron ring	7.0			
束线	1.2			
实验谱仪	8.0			
低温	1.0			
配套设施	1.8			
装置土建	6.0			
不可预见	3.0			
合计	40			

- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019 Moscow(September)

Strategy& Activities

$CDR \rightarrow TDR \rightarrow$ project application \rightarrow construction \rightarrow

commissioning

- Strategy: focus on CDR (3 years) and TDR (6 years) depend on the available resources. the construction site open.
- Webpage: http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/
- Domestic Workshops (2011, 12, 13, 14, 16)
- International Workshops (2015, 18)
- 2015 Fragrance Hill-Science Conference (No. 533)
- Report to USTC Scientific Committee and USTC presidents
- Report to local government
- Form the Organization (including project manager, physics/detector/accelerator work groups)
- Regular weekly meetings for Accelerator/Detector/physics !
 Xiao-Rui LYU
 BEAUTY 2020, online

Activities

High Luminosity Tau Charm Physics

Indico for High Luminorcity Tau Charm Physics R&D

STCF Steering Committee	1 event 🕥	
STCF Accelerator	72 events	
STCF Physics	24 events	
STCF Detector	265 events 🔘	
STCF Accelerator-Detector Joint meetings	10 events 🔇	
STCF International Conference	11 events	
STCF Domestic meeting	13 events	

Spectrometer

BEAUTY 2020, online

41

Summary

- **STCF** is one of the crucial precision frontier
- Important playground for studying non-perturbtive QCD and search for new physics
 - rich of physics program
 - unique for physics with c quark and τ leptons,
 - important playground for study of QCD, exotic hadrons and search for new physics.
- Complementary to Belle-II and LHCb in understanding the QCD/EW models and searching for new physics
- Project organization is setup and a working group is toward for CDR/TDR

Thank you! 谢谢!

Charmonium(-like) states @ STCF

- ψ/Y/hybrid(ccg) (1⁻⁻) produced in the e⁺e⁻ collision
 - To determine the resonance parameters for the excited ψ or Y state
 - Precisely measure the x-sec of inclusive/exclusive final states at different energy points
- Charge parity c=+ states produced via radiative transition from vector ψ/Y
 - − The decay rate ψ (nS/nD) \rightarrow γX(3872), X(3940)...
 - Search for $\chi_{cJ}(2P)$, $\chi_{cJ}(3P)$, $\eta_c(3S)$, $\eta_c(4S)$, ... B($\psi(3S) \rightarrow \gamma \chi'_{cJ}$) = (7, 3, 1) x 10⁻⁴ for J=2,1,0 [Rev. Mod. Phys. 80, 1161 (2008)]
- Search for new states from hadronic transition
 - To search for Zc, Zcs, hc(2P)

PLB 660, 315 (2008)

PRL 112, 092001 (2014)

Xiao-Rui LYU

Nucleon Electromagnetic Form Factors (NEFFs)

Spatial distributions of electric charge and current inside the nucleon

Complete picture of nucleon structure requires space-like and time-like FF

Collins Fragmentation Function (FF)

D1: the un-polarized FF H1: Collins FF

 \rightarrow describes the fragmentation of a transversely polarized quark into a spin-less hadron *h*.

 \rightarrow depends on $z = 2E_h/\sqrt{s}$,

 \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum.

Xiao-Rui LYU

BEAUTY 2020, online

SIDIS

e+ e-

Collins FF 🛞 Collins FF

Collins Fragmentation Function (FF)

Anselmino et al., PRD 87, 094019 (2013) Using data from HERMES, COMPASS, Belle

Transversity

The Q² evolution of Collins FFs was assumed following the extrapolation in the unpolarized FF, and this has not been validated.

 $\Box \text{ Low } Q^2 \text{ data from } e+e- \text{ collider is useful.}$

BEPCII / STCF

• Similar Q2 coverage with SIDIS in EicC

Xiao-Rui LYU

Collins Fragmentation Function (FF) at STCF

- □ STCF is a perfect machine for studying Collins effect
- **D** Poor performance for the traditional de/dx & TOF PID system for tracks > 0.8GeV
- This measurement suffer from systematic uncertain from $K \pi$ mis-PID.
- □ The mis-PID is even worse in the case of *KK* Collins measurement.

□ With 2.5 fb⁻¹ 7GeV $q\bar{q}$ MC ($\sigma \approx 5$ nb LundArlw), we study Collins effect at STCF.

Blue: $\pi - K$ mis-PID in KK Collins measurement. Left) de/dx&TOF. Right) a 1% mis-PID set in FastSim

D By setting the $K - \pi$ mis-PID at 1%, we obtain:

- The statistical uncertainty for $25 \text{fb}^{-1} \text{ MC}$ is $\sim 10^{-3}$ to 10^{-2}
- The statistical uncertainty for $1ab^{-1}$ MC is $\sim 10^{-4}$ to 10^{-3}

Nucleon Electromagnetic Form Factors (NEFFs)

A CLOBY OF ST

Spatial distributions of electric charge and current inside the nucleon $e^+e^- \leftrightarrow N\overline{N}$, $\wedge \wedge$

Charmed Baryons

Charmed baryons are produced via $e^+e^- \rightarrow B_{1c}B_{2c}$ with $B_{ic} = n_1n_2c$

- Systematic measurement of absolute decay BFs with well controlled systematics and low backgrounds
- Thorough studies on the charmed baryon spectroscopy

	Structure	J^P	Mass, MeV	Width,MeV	Decay
Λ_c^+	udc	$(1/2)^+$	2286.46 ± 0.14	(200 ± 6) fs	weak
Ξ_c^+	usc	$(1/2)^+$	$2467.8^{+0.4}_{-0.6}$	$(442\pm26)~{\rm fs}$	weak
Ξ_c^0	dsc	$(1/2)^+$	$2470.88\substack{+0.34\\-0.8}$	112^{+13}_{-10} fs	weak
Σ_c^{++}	uuc	$(1/2)^+$	2454.02 ± 0.18	2.23 ± 0.30	$\Lambda_c^+\pi^+$
Σ_c^+	udc	$(1/2)^+$	2452.9 ± 0.4	< 4.6	$\Lambda_c^+\pi^0$
Σ_c^0	ddc	$(1/2)^+$	2453.76 ± 0.18	2.2 ± 0.4	$\Lambda_c^+\pi^-$
$\Xi_c^{\prime+}$	usc	$(1/2)^+$	2575.6 ± 3.1	_	$\Xi_c^+ \gamma$
$\Xi_c^{\prime 0}$	dsc	$(1/2)^+$	2577.9 ± 2.9	_	$\Xi_c^0 \gamma$
Ω_c^0	SSC	$(1/2)^+$	2695.2 ± 1.7	(69 ± 12) fs	weak
Σ_c^{*++}	uuc	$(3/2)^+$	2518.4 ± 0.6	14.9 ± 1.9	$\Lambda_c^+\pi^+$
Σ_c^{*+}	udc	$(3/2)^+$	2517.5 ± 2.3	< 17	$\Lambda_c^+\pi^0$
Σ_c^{*0}	ddc	$(3/2)^+$	2518.0 ± 0.5	16.1 ± 2.1	$\Lambda_c^+\pi^-$
Ξ_c^{*+}	usc	$(3/2)^+$	$2645.9^{+0.5}_{-0.6}$	< 3.1	$\Xi_c \pi$
Ξ_c^{*0}	dsc	$(3/2)^+$	2645.9 ± 0.5	< 5.5	$\Xi_c \pi$
Ω_c^{*0}	SSC	$(3/2)^+$	2765.9 ± 2.0	_	$\Omega_c^0 \gamma$

CP Violation in τ Decay

- CP violation is observed in B and K sectors, but not observed in lepton sector yet.
- Strongly suppressed in the SM ($A_{CP} \le 10^{-12}$)
- A discovery of CPV in the tau sector would be a clean signature of NP
- One of the most promising CPV channels is $\tau^- \rightarrow K_S \pi^- \nu$ $\mathcal{A}_{\tau} = \frac{\Gamma(\tau^+ \rightarrow \pi^+ K_S^0 \bar{\nu}_{\tau}) - \Gamma(\tau^- \rightarrow \pi^- K_S^0 \nu_{\tau})}{\Gamma(\tau^+ \rightarrow \pi^+ K_S^0 \bar{\nu}_{\tau}) + \Gamma(\tau^- \rightarrow \pi^- K_S^0 \nu_{\tau})}$
 - SM CP asymmetry from K_S-K_L mixing is expected to be : [PLB 625, 2005; JHEP 1204 (2012) 002]

 $\mathcal{A}_{\tau}^{\mathrm{SM}} \simeq 2 \mathrm{Re}(\epsilon) \simeq (0.36 \pm 0.01)\%$

- BaBar measurement [PRD 85, 099904] : 2.8σ from SM!

$$\mathcal{A}_{\tau} = (-0.36 \pm 0.23 \pm 0.11)\%$$

- Belle measurement [PRL 107, 131801]: does not see any asymmetry at the 0.2 - 0.3% level

 $A_{cp} = (1.8 \pm 2.1 \pm 1.4) \times 10^{-3} @ W \sim [0.89-1.11] GeV$ $|Im(\eta_S)| < 0.026 \text{ or better}$

Charge Higgs, new Scalar, W_L-W_R Mixings, LeptonQuarks?

Xiao-Rui LYU

τEDM

- $\square The \tau magnetic and electric dipole moments may play an important role in elucidating the nature of this heavy lepton.$
- □ If BSM exists in the lepton sector, tau lepton is an ideal test case, since it is expected to couple more strongly to BSM.
- Detect BSM through loop diagrams, and through its interference with the SM process – high statistics is needed. Ideal experiments: current (Belle II) and STCF

Belle II:

L	1 ab ⁻¹	10 ab ⁻¹	50 ab ⁻¹
$ d_{ au}^{NP} $ (e cm)	1.43×10 ⁻¹⁸	4.51×10 ⁻¹⁹	2.02×10 ⁻¹⁹

STCF (without polarized beams):

Time of data accumulation	1 year	5 years	10 years
$ d_{ au}^{NP} $ (e cm)	5.14×10 ⁻¹⁹	2.30×10 ⁻¹⁹	1.62×10 ⁻¹⁹

LFV: a gateway to BSM

• Many extensions of SM naturally introduces cLFV at order $\sim 10^{-7} - 10^{-10}$ (an crucial place to test BSM)

Model	Ref.	τ→μγ	τ→μμμ	μ^{-}
SM + heavy majorana	PRD 66.034008	10 ⁻⁹	10-10	$\tau \qquad \sqrt{\mu^+}$
Non-universal Z'	PLB 547(3)252	10 ⁻⁹	10 ⁻⁸	• <i>p</i>
SUSY + seesaw	PRL 89:241802	10-10	10-7	$\widetilde{\chi}^{-}$
SM + 4 th generation	arXiv.1006.530	10 ⁻⁸	10 ⁻⁸	τ µ
	6			$\widetilde{ u}_{ au}$ $\widetilde{ u}_{ au}$ '

- τ —the heaviest charged lepton:
 - Strength of interaction relate to new physics is naively expected to be mass-dependent
 - $\tau \rightarrow l\gamma$ and $\tau \rightarrow lll$ are golden mode, which are expected to have largest branching fraction

Xiao-Rui LYU

Evolution of limits

- Very rich experimental programme with substantial improvements expected in near future.
- Remarkable progress expected on Muon LFV searches.
- B factories expected to be the most powerful for tau LFV.

Xiao-Rui LYU

cLFV Decay $\tau \rightarrow \ell \gamma$

- No evidence of new physics been found at high energy frontier.
- important and complementary to search for new physics in the precision frontier.

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
€ _K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^\star\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_{\rm s} \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_c	***	***	**	*	***	*	***
$(g - 2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

W. Altmannshofer et al. arXiv : 0909.1333

	BES III	STCF
	$10^{33}cm^{-2}s^{-1}$	10 ³⁵ cm ⁻² s ⁻¹ (1ab ⁻¹)
J/ψ	10×10 ⁹	10×10^{11}
ψ(2S)	3×10 ⁹	3×10^{11}
D(3.773GeV)	6×10 ⁷	6×10^{9}
Ds (4.17 GeV)	1×10^{7}	1×10^{9}
τ+τ- (3.68GeV)		2.4×10^{9}
τ+τ- (4.25GeV)	3×10 ⁷	3.5×10^{9}
$\Lambda_c^+\Lambda_c^-$ (4.64GeV)	3×10 ⁶	6×10^{8}

Charm mixing and CPV parameters

• For quantum-incoherent D^0 meson samples[1]:

 $\overline{P}'\left(m_{12}^2, m_{13}^2\right) = a_0 \overline{P} + a_1 r_{\mathcal{CP}}^{-2} P + r_{\mathcal{CP}}^{-1} \sqrt{P\overline{P}} \left(C^- a_2 + S^- a_3\right)$

• For quantum-coherent $D^0\overline{D}^0$ samples:

$$\begin{aligned} r_{\mathcal{CP}} e^{i\alpha_{\mathcal{CP}}} &= \frac{q}{p}, \\ S^{\pm} &= \sin\left(\Delta\delta_D \pm \alpha_{\mathcal{CP}}\right), \\ C^{\pm} &= \cos\left(\Delta\delta_D \pm \alpha_{\mathcal{CP}}\right), \\ a_0 &= \frac{1}{2} \left(\frac{1}{1-y_D^2} + \frac{1}{1+x_D^2}\right) \\ &= 1 + \frac{1}{2} \left(-x_D^2 + y_D^2\right) + O\left((x_D + y_D)^3\right), \\ a_1 &= \frac{1}{2} \left(\frac{1}{1-y_D^2} - \frac{1}{1+x_D^2}\right) \\ &= \frac{1}{2} \left(x_D^2 + y_D^2\right) + O\left((x_D + y_D)^3\right), \\ a_2 &= \frac{y_D}{1-y_D^2} = y_D + O\left((x_D + y_D)^3\right), \\ a_3 &= \frac{x_D}{1+x_D^2} = x_D + O\left((x_D + y_D)^3\right). \end{aligned}$$

$$\begin{split} P^{\mathcal{C}}_{corr}\left(\left(m_{12}^{2}\right)_{1},\left(m_{13}^{2}\right)_{1},\left(m_{12}^{2}\right)_{2},\left(m_{13}^{2}\right)_{2}\right) &= b^{\mathcal{C}}_{0}\left[P_{1}\overline{P}_{2} + \overline{P}_{1}P_{2} + 2\mathcal{C}\sqrt{P_{1}\overline{P}_{1}P_{2}\overline{P}_{2}}\left(C_{1}C_{2} + S_{1}S_{2}\right)\right] \\ &+ b^{\mathcal{C}}_{1}\left[r_{\mathcal{CP}}^{-2}P_{1}P_{2} + r_{\mathcal{CP}}^{2}\overline{P}_{1}\overline{P}_{2} + 2\mathcal{C}\sqrt{P_{1}\overline{P}_{1}P_{2}\overline{P}_{2}}\left(C_{1}^{+}C_{2}^{+} - S_{1}^{+}S_{2}^{+}\right)\right] \\ &+ b^{\mathcal{C}}_{2}\left[\sqrt{P_{2}\overline{P}_{2}}C_{2}^{+}\left(r_{\mathcal{CP}}\overline{P}_{1} + r_{\mathcal{CP}}^{-1}P_{1}\right) + \mathcal{C}\sqrt{P_{1}\overline{P}_{1}}C_{1}^{+}\left(r_{\mathcal{CP}}\overline{P}_{2} + r_{\mathcal{CP}}^{-1}P_{2}\right)\right] \\ &+ b^{\mathcal{C}}_{3}\left[\sqrt{P_{2}\overline{P}_{2}}S_{2}^{+}\left(r_{\mathcal{CP}}\overline{P}_{1} - r_{\mathcal{CP}}^{-1}P_{1}\right) + \mathcal{C}\sqrt{P_{1}\overline{P}_{1}}S_{1}^{+}\left(r_{\mathcal{CP}}\overline{P}_{2} - r_{\mathcal{CP}}^{-1}P_{2}\right)\right], \end{split}$$

$b_0^{\mathcal{C}} = \frac{1}{2} \left[\frac{1 + \mathcal{C} y_D^2}{\left(1 - y_D^2\right)^2} + \frac{1 - \mathcal{C} x_D^2}{\left(1 + x_D^2\right)^2} \right] \approx a_0 + \frac{\mathcal{C} + 1}{2} \left(-x_D^2 + y_D^2 \right).$
$b_{1}^{\mathcal{C}} = \frac{1}{2} \left[\frac{1 + \mathcal{C}y_{D}^{2}}{\left(1 - y_{D}^{2}\right)^{2}} - \frac{1 - \mathcal{C}x_{D}^{2}}{\left(1 + x_{D}^{2}\right)^{2}} \right] \approx (\mathcal{C} + 2) a_{1},$
$b_2^{\mathcal{C}} = \frac{(1+\mathcal{C}) y_D}{\left(1-y_D^2\right)^2} \approx (1+\mathcal{C}) a_2,$
$b_3^{\mathcal{C}} = rac{(1+\mathcal{C}) x_D}{(1+x_D^2)^2} pprox (1+\mathcal{C}) a_3,$

Integral Luminosity of STCF

- No Synchrotron radiation mode, assume running time 9 months/year
- Assume data taking efficiency 90%

 $0.5 \times 10^{35} \text{cm}^{-2} \text{s}^{-1} \times 86400 \text{s} \times 270 \text{days} \times 90\% \sim 1.0 \text{ab}^{-1}/\text{year}$

10 years data taking, total 20 ab⁻¹ conservatively

Excellent opportunities for the τ -charm physics

