CMS Upgrade and B-physics at the HL-LHC

Subir Sarkar Saha Institute of Nuclear Physics

On behalf of the CMS Collaboration

Beauty 2020, 19th International Conference on B-Physics at Frontier Machines September 21-24, 2020

Outline

- HL-LHC prospects and challenges
- CMS Phase-2 Upgrade overview
- Tracking at Level1
- CMS B-physics program for HL-LHC
 - $\circ \mathsf{B}_{\mathsf{s}} \to \phi \phi \to \mathsf{K}^{+}\mathsf{K}^{-}\mathsf{K}^{+}\mathsf{K}^{-}$
 - $\circ B_{d/s} \rightarrow \mu^+ \mu^-$
- Summary

High Luminosity LHC Scenario

- Physics prospects with 3000-4000 fb⁻¹
 - precision measurements of the Higgs boson properties
 - Higgs boson self coupling
 - improved SM measurements and access to rare SM processes
 - extending discovery reach for physics beyond the SM
 - precision measurements in the flavour sector

Challenges at the HL-LHC

A CMS event from a special run in 2016 with HL-LHC like pileup interactions

- B physics potential, in particular, will suffer significantly from the HL-LHC pileup conditions
 - \circ low p_{T} signature
 - requirement of very high precision measurements

- Extremely harsh environment
 - expected average pileup interactions of 140-200
 - increase of particle density
 - radiation damage to the detector
- L1 trigger rate will be unmanageable at 40 MHz with only calorimeter and muon information
 - availability of tracking information at L1 crucial to retain full physics potential

CMS Phase-2 Upgrade Overview

- CMS upgrades include
 - a new tracker with improved radiation hardness and p_T resolution
 - increased Muon coverage
 - a new forward calorimeter with high granularity and resolution
 - addition of the MIP timing detector (MTD)
 - replacement of electronics
 - increased trigger bandwidth and latencies
 - inclusion of tracking information at Level1 trigger

Phase-2 Tracker Upgrade

- Inner tracker (IT)
 - \circ pixel sensors
 - narrower pitch than present pixel detector
 - increased granularity to limit the occupancy
 - $\circ~$ coverage up to $|\eta|{\sim}4$

- Outer tracker (OT)
 - design driven by addition of hardware track trigger capabilities
 - pixel-strip & 2-strip sensors
 - progressively tilted moduleS

Phase-2 Tracker Upgrade: Efficiency, Fake rate, material budget

High efficiency maintained over the full pseudorapidity coverage both for muons (p T > 10 GeV) and tracks from ttbar events (p T > 0.9 GeV)
 Level of fake tracks increases with pileup, but still under control (always < 4% even at 200 PU)

Substantial reduction of the material budget with respect to present detector

Tracking Performance - Phase-2 vs Phase-1

CMS-TDR-014

- Larger η coverage
- In the same η region, Phase-2 tracker performs better
- b-Tagging can be extended to high η region
- Improved p_T and IP resolution will improve overall physics performance

L1 Tracking

- Availability of tracking information at L1 enables CMS to
 - \circ improve p_T resolution of various objects (e.g. muons)
 - mitigate impact of pileup interactions
 - exploit track isolation
 - perform particle-flow reconstruction of physics objects at the trigger level
- OT modules are designed to select high-p_T tracks at the detector front-end
 - two closely-spaced single-sided sensors
 - correlate hits on the two sensors
 - a local p_T measurement is possible to allow on-detector filtering using p_T thresholds
 - a "stub" formed
 - limited in angular acceptance up to $|\eta| = 2.4$

L1 Tracking and L1 Trigger

- Hardware trigger receives track "stubs" with p_T > 2 GeV
 a factor 10-100 reduction in data volume
- "stubs" are then sent to the off-detector L1 tracking system, which reconstructs tracks for input to the L1 trigger
 - a track is formed by connecting the "stubs" in different layers
- Tracking information will be combined with Calorimeter and Muon Chamber information
- Once an event is selected at Level, all the tracker hits in pipeline are passed to HLT

Track reconstruction

Muon Detector Upgrade

- Additional chambers to enhance muon trigger and reconstruction performance in the forward region
 - RPC (iRPC) in the region 1.6 < $|\eta|$ < 2.4
 - GEM chambers
 - GE1/1, GE2/1 in front of existing forward muon (CSC) system in the region 1.6 < $|\eta|$ < 2.4
 - ME0 to extend coverage up to $|\eta| = 2.8$
- Upgrade of electronics to cope with radiation hardness, meet trigger/readout latency requirements

• Higher efficiency

- more hits along the muon's trajectory in the forward muon system due to the new chambers
- better interplay detectors \Leftrightarrow faster electronics
- Lower rate
 - improved identification and momentum measurement
- Significantly improved turn-on
 - \circ $\;$ integration with L1 track trigger $\;$
- Extended coverage in η for multi-muon triggers

Mitigation of Impact of Pileup - MIP Timing Detector

- 5-fold increase in pileup will adversely impact quantities based on charged particles
- Performance can be recovered by exploiting the time distributions of different interactions
 - timing resolution of 10-30 ps needed to distinguish between interactions
- Calorimeter upgrades provide precision timing for high/medium energy photons and hadrons
- Additional timing layer (barrel + endcaps outside tracker volume) provides precision timing (σ_t ~ 30 ps) for charged hadrons & converted photons down to a few GeV
 traditional 3D vertex fit can be upgraded to a 4D fit
- Particle ID capability for charged particles with $p_T < 2$ GeV (p, K, π)

12

CMS B-physics Program

Search for rare FCNC fully hadronic B decays

Search for very rare FCNC leptonic B decays

- $B_s \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$
 - \circ no object based trigger
 - \circ inaccessible without the L1 tracks
 - $\circ~~p_{_{T}}$ threshold as low as 2 GeV
 - \circ L1 trigger study

• $B_{d/s} \rightarrow \mu^+ \mu^-$

- di-muon trigger
- $\circ~$ L1 track trigger to ensure high efficiency for low p_{T} muons
- Full study (L1 + Offline)

<u>CMS-TDR-021</u>

CMS-TDR-014 CMS-PAS-FTR-18-013

Both the searches offer a handle for indirect search of NP beyond SM

 $B_{s} \rightarrow \phi \phi \rightarrow 4$ kaons

- A fully hadronic, rare final state • Br($B_s \rightarrow \phi \phi$) \approx (1.84 ± 0.18) × 10⁻⁵ (PDG)
- Final state Kaons are low p_T tracks
 close to the L1 tracking threshold of 2 GeV

- FCNC process forbidden at tree level
- b quark decaying through a penguin diagram
 - may receive contribution from heavy particles, beyond the direct reach of LHC
 - provide new insight to the CP violating phase in the B_s system

Analysis Strategy

- ϕ candidates are reconstructed from pairs of tracks
 - \circ with opposite charges
 - originating from same primary vertex
 - assuming tracks to be kaons
- B_s candidates are then formed from ϕ candidate pairs coming from the same vertex
- Events with at least one B_s candidate are selected
- Signal samples generated with Pythia8 and EvtGen, with 140 and 200 Pileup scenarios
 - L1 tracking to estimate signal efficiency
 - Offline tracking to check if offline is fully efficient over L1
- Single neutrino-gun events used to estimate event rate at L1

Baseline Selection

- To optimize signal efficiency and event rate, three different working points for event selection used
 - $\circ\;$ Loose, medium and tight

Working point	loose	medium	tight		
Tracks	$p_{\rm T} \ge 2 { m GeV}$	$ \eta \le 2.5,$	$\chi^2/ndf \le 20, N_{stub} \ge 4, N_{stub}^{PS} \ge 2$		
Track pair	$d_{xy} \le 0.5 \mathrm{cm}, d_z \le 0.6 \mathrm{cm}$				
ϕ -pair	$d_{xy} \le 0.5 \mathrm{cm}, d_z \le 0.6 \mathrm{cm}$				
ϕ -pair	$0.2 \le \Delta R(\phi_1, \phi_2) \le 1, \Delta R(K^+, K^-) \le 0.12$				
ϕ mass	$0.99 \le M_{K^+K^-} \le 1.04 \text{ GeV}$				
B_s^0 mass	$5.0 \le M_{\phi\phi}$	≤ 5.8 GeV	$5.1 \le M_{\phi\phi} \le 5.7 \text{ GeV}$		
$B_s^0 p_{\rm T}$	$\geq 10 \text{ GeV}$		\geq 12 GeV		

 d_z and d_{xy} : distance between a pair of tracks or trajectories of a pair of reconstructed particles along the beam axis (z) and in the plane perpendicular to beam axis (xy), respectively

ϕ Candidate Mass

- Invariant mass distribution of all track pairs with
 - opposite charges
 - $|d_{z}| < 0.6 \text{ cm}, |d_{xy}| < 0.5 \text{ cm}$
 - track $p_T > 2 \text{ GeV}$
 - assuming Kaon
- Distributions normalized to unit area; without any preliminary selection on the B_s mass window

$\Delta R(\phi$ -pair)

- $\Delta R(\phi$ -pair) distribution for all ϕ pairs with
 - $0.99 \le M_{K+K-} \le 1.04 \text{ GeV}$
 - $|d_{z}| < 0.6 \text{ cm and } |d_{xy}| < 0.5 \text{ cm}$
- Distributions normalized to unit area; without any preliminary selection on the B_s mass window

B_s Mass

- $M_{\phi\phi}$ distribution for all ϕ pairs with
 - $\circ \quad 0.99 \leq M_{K^+K^-} \leq 1.04 \text{ GeV}$
 - \circ $|d_{z}| < 0.6 \text{ cm}, |d_{xy}| < 0.5 \text{ cm}$
 - $0.2 \le \Delta R(\phi$ -pair) ≤ 1
- Distributions normalized to unit area; without any preliminary selection on the B_s mass window

Efficiencies and Rates

(3) 217-52				
Baseline -	Efficiency (%)		Rate (kHz)	
	L1	Offline	< PU > = 200	Statistical
Loose	36.15 ± 0.37	60.78 ± 0.50	44.70 ± 1.65	uncertainty only
Medium	30.28 ± 0.33	50.04 ± 0.44	15.00 ± 0.95	
Tight	30.25 ± 0.33	49.96 ± 0.43	10.02 ± 0.78	

For <PU> = 200

- ~ 30% signal efficiency achievable at a rate ~ 10-15 kHz
- Computation possible on the FPGAs within the given time

FPGAs will be used at the L1 while GPUs will be used at the HLT

- Proceeds through FCNC, thus highly suppressed in the SM
 - EW-Penguin and box diagrams, but no tree level
 - Helicity suppressed
- Presence of new physics may enhance/suppress the branching fractions
- precise measurement of branching ratio and other observables is the key

Results	Br(B _s → μ⁺μ⁻)	Br(B _d → μ⁺μ⁻)	
SM	(3.66 ± 0.23) x 10 ⁻⁹	(1.06 ± 0.09) x 10 ⁻⁹	-
			-
Run I (CMS)	(3.0 ^{+1.0} 0.9) ×10 ⁻⁹	< 1.1 x 10 ⁻⁹ @95% CL	Phys. Rev. Lett. 111, 101804
Run I (CMS + LHCb)	(2.8 ^{+0.7} _{-0.6}) ×10 ⁻⁹	(3.9 ^{+1.6} _{-1.4}) ×10 ⁻¹⁰	<u>Nature</u> 522, 68–72 (2015)
Run I (ATLAS)	(0.9 ^{+1.1} _{-0.8}) ×10 ⁻⁹	< 4.2 x 10 ⁻¹⁰ @95% CL	<i>Eur.Phys.J.C</i> 76 (2016) 9, 513
Run I, II (LHCb)	$(3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$	< 3.4 x 10 ⁻¹⁰ @95% CL	Phys. Rev. Lett. 118, 191801 (2017)
ATLAS+CMS+LHCb	(2.69 ^{+0.37} _{-0.35}) ×10 ⁻⁹	< 1.9 x 10 ⁻¹⁰ @95% CL Also see CMS: Search fo	ATLAS-CONF-2020-049 etc. r Rare Decays by Chandiprasad Kar

Analysis

- Input to the projection study
 - CMS Run-2 analysis strategy, updated SM predictions, improvements in L1 trigger, mitigation of impact of Pileup, di-muon mass resolution, scaling of systematic uncertainties
- B candidates are formed from two oppositely charged muon candidates with
 p_T > 4 GeV for |η| < 1.4
 p_T > 2 GeV for |η| > 1.4
- A simple Gaussian fit is performed on the mass distribution to find the peak position and resolution

- $B_s \rightarrow \mu^+ \mu^-$ mass distribution is normalized to unit area, whereas the $B_d \rightarrow \mu^+ \mu^-$ mass distribution is normalized to the SM predicted value
- most forward muon $|\eta_f| < 1.4$

Improvement in mass resolution leads to better separation of mass peak

B_s Mass Resolution

- B_s mass resolution vs pseudorapidity of the most forward muon candidate, |η_f|
- Comparison of Run 2 and Phase-2

Improvement in the momentum resolution leads to ~ 40% gain in mass resolution for $|\eta_f| < 1.0$

Mass Peak Separation and Leakage

- Mass Peak Separation
 - ~ 25 % improvement in mass peak separation for $|\eta_f| < 1.4$
 - reduces cross-feed
 - helps rejecting backgrounds, rare semi-leptonic decay

- Cross-feed: ratio of number B_d events over number of B_s events in the B_d invariant mass range
 - $\circ~$ Phase-2 visibly better and robust for $|\eta_{f}|$ < 0.8.
 - measurement difficult in the region $|\eta_f| > 1.4$, due to high leakage

Projection of Analysis Sensitivity

3 ab⁻¹(14 TeV) 3 ab⁻¹(14 TeV) GeV GeV toy events CMS Phase-2 toy events CMS Phase-2 5 600 Simulation Preliminary $0 \frac{1}{2} \frac{$ - full PDF - full PDF Simulation Preliminary Entries / 0.04 ($B^0_s \rightarrow \mu^+ \mu^-$ B_s⁰→μ⁺μ[−] $B^0 \rightarrow \mu^+ \mu^ B^0 \rightarrow \mu^+ \mu^ 0.7 < |\eta_i| < 1.4$ combinatorial bkg ----- combinatorial bkg semileptonic bkg ····· semileptonic bkg $B \rightarrow h\mu^+\mu^- bkg$ $B \rightarrow h\mu^{\dagger}\mu^{\dagger} bkg$ ---- peaking bkg ---- peaking bkg 300 300 200 200 100 100 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 4.9 5.1 5.2 5.3 5.4 5.5 5.6 5.8 5.9 5 57 M(μμ) [GeV] M(μμ) [GeV]

CMS-PAS-FTR-18-013

- Observation of $B_d \rightarrow \mu^+ \mu^-$ at 50 or more
- More precise measurement of
 - ∘ Br(B_s → $\mu^+\mu^-$)
 - ∘ Br($B_d^- \rightarrow \mu^+ \mu^-$)
 - ∘ Br($B_s^- \rightarrow \mu^+ \mu^-$)/Br($B_d^- \rightarrow \mu^+ \mu^-$)

L (fb ⁻¹)	N(B _s)	N(B _d)	ΔBr(B _s → μ⁺μ⁻)	$\Delta Br(B_d \rightarrow \mu^+\mu^-)$	B _d Significance
300	205	21	12%	46%	1.4 - 3.5σ
3000	2048	215	7%	16%	6.3 - 8.3σ

Summary

- The HL-LHC and CMS Phase-2 upgrade will extend the physics reach of CMS significantly
- $B_s \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$
 - $\circ~$ showcases the power of CMS L1 Tracking
 - signal distinctly visible even at <PU> = 200 at L1
 - offline analysis is definitely more challenging
- $B_{d/s} \rightarrow \mu^+ \mu^-$
 - significant improvement in mass resolution leads to better separation of $B_s \rightarrow \mu^+\mu^-$ and $B_d \rightarrow \mu^+\mu^-$ mass peaks
 - observation of $B_d \rightarrow \mu^+\mu^-$ at 5σ or more
 - more precise measurement of Br($B_{d/s} \rightarrow \mu^+ \mu^-$), ratio of the branching fractions and other observables
 - measurements will be difficult in very forward regions
- $B_s \rightarrow J/\psi (\mu^+\mu^-) \phi(K^+K^-)$, $H \rightarrow \phi(K^+K^-) \gamma$, $H \rightarrow \rho(\pi^+\pi^-) \gamma$ will gain from L1 tracking
- $\tau \rightarrow \mu \mu \mu$ will gain from extended muon coverage and L1 tracking

Thank You!