Recent results on CP-Violation Measurements from Belle

Kookhyun Kang

Kyungpook National University, Korea On behalf of the Belle Collaboration

2020.09.23 BEAUTY 2020

Outline

- Introduction
 - Measurements of $\sin 2\phi_1^{eff}$
- Preliminary result $B^0 \rightarrow K_S^0 K_S^0 K_S^0$
- Published result $B^0 o \pi^0 \pi^0 K^0_S, \ B^0 o J/\psi \pi^0$
- Summary

Establishing CP violation in B meson decay

Introduction – time-dependent CP violation

- The time-dependent *CP* violation (*TCPV*) can be caused by the interference between B^0 decay to *CP* eigenstate (f_{cp}) and $B^0 - \overline{B}^0$ mixing.

- mixing-induced CP violation (S)

- Time-dependent *CP* asymmetry

 $\mathcal{A}_{CP} = \frac{P(\bar{B}^{0}(\Delta t) \to f_{CP}) - P(B^{0}(\Delta t) \to f_{CP})}{P(\bar{B}^{0}(\Delta t) \to f_{CP}) + P(B^{0}(\Delta t) \to f_{CP})} = Ssin(\Delta m \Delta t) + Acos(\Delta m \Delta t) \qquad S = \text{mixing-induced } CP \text{ violation}$ A = direct CP violation

Measurement of S: some typical mode (ex: $B^0 \rightarrow J/\psi K_S^0$) \rightarrow unitarity angle $\phi_1 = \beta$ where $\phi_1 \equiv \arg[-(V_{cd}V_{cb}^*)/(V_{td}V_{tb}^*)]$

Measurements of $\sin 2\phi_1$

 $b \rightarrow c\bar{c}s$ transition (ex: $B^0 \rightarrow J/\psi K_S^0$) sin $2\phi_1 = 0.699 \pm 0.017$ (W.A.)

 $b \rightarrow c\bar{c}d$ transition (ex: $B^0 \rightarrow J/\psi\pi^0$, $J/\psi\rho^0$) sin $2\phi_1^{eff} = ???$

 $b \rightarrow s\bar{q}q$ penguin transition (ex: $B^0 \rightarrow \pi^0 \pi^0 K_S^0$, $K_S^0 K_S^0 K_S^0$) $\sin 2\phi_1^{eff} = ???$

Significant deviation of $\sin 2\phi_1^{eff}$ from $\sin 2\phi_1$ indicates evidence of NP.

[Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Eur. Phys. J. C74 (2014) 3026]

Preliminary result $B^0 \rightarrow K_S^0 K_S^0 K_S^0$

Introduction - motivation

- Pure $b \rightarrow s$ penguin transition by loop diagram
 - Sensitive to new physics
- *CP*-even eigenstate
 - $S = -\sin 2\phi_1^{eff}$
- We aim to accurately measure TCPV value in $B^0 \rightarrow K_S^0 K_S^0 K_S^0$ with final data sample (772M $B\overline{B}$).

•
$$\Delta E = E_B - E_{beam}$$

• E_B = energy of B in CM frame
• E_{beam} = half of beam energy
• $M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$
• p_B = momentum of B in CM frame

Vertex reconstruction & flavor tagging

- Flavor tagging is performed by using inclusive properties of particles not associated with the B_{signal} .
 - B_{signal} decay to CP eigenstate
 - flavor $q = B^0$ or \overline{B}^0

 $\Delta t = \Delta z / \beta \gamma c$, $\Delta z \approx 200 \ \mu m$ $\beta \gamma =$ boost factor 0.425

The flavor and Δt are needed for *TCPV* extraction

- An unbinned maximum likelihood (ML) fit with 3D PDF (ΔE , M_{bc}, Transformed NN).
- Signal $B^0 \& \overline{B}{}^0$ is obtained to be 258 ± 17 and the purity in the signal region is 74%.

PDF	ΔΕ	M _{bc}	Transformed NN
Signal	Double Gaussian	Gaussian	Asymmetry Gaussian
Background	1 st Polynomial	ARGUS	Asymmetry Gaussian

Measurement of CPV parameters

• PDF to extract *CPV* parameters

$$\mathcal{P}_{j}(\Delta t_{j}, q_{j}) = (1 - f_{\rm ol}) \times [f_{j}^{\rm sig} \mathcal{P}_{\rm sig}(\Delta t_{j}, q_{j}) + (1 - f_{j}^{\rm sig}) \mathcal{P}_{\rm bkg}(\Delta t_{j})] + f_{\rm ol} \mathcal{P}_{\rm ol}(\Delta t_{j})$$

- P_{sig} : signal PDF
- *P*_{*bkg*}: continuum background PDF
- P_{ol} : outlier components PDF
- Fitting results
 - $S = -0.71 \pm 0.23$ (stat) ± 0.05 (syst)
 - $-\sin 2\phi_1$ in $b \to c\bar{c}s = -0.699$
 - $A = 0.12 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$

Significance of CP violation

- The significance is calculated using the Feldman-Cousins approach.
- The significance of *CP* violation is determined to be 2.5σ away from (0,0)

Consistent with previous measurements and $b \rightarrow c \bar{c} s$

Published result

 $B^0 \rightarrow \pi^0 \pi^0 K_S^0$ - PRD **99** 011102 (2019) $B^0 \rightarrow J/\psi \pi^0$ - PRD **98** 112008 (2018)

 $B^0 \rightarrow \pi^0 \pi^0 K_S^0$

- $b \rightarrow s\bar{q}q$ three body decays
 - Tree diagram $b \rightarrow s \overline{u} u \rightarrow doubly Cabibbo suppressed$
 - Penguin diagram $b \rightarrow s\bar{d}d \rightarrow$ main decay
- Any NP will shift $S = -\sin 2\phi_1^{eff}$ by penguin diagram
- First measurement using the final Belle data (772 \times 10⁶ $B\overline{B}$)

 $B^0 \rightarrow \pi^0 \pi^0 K_S^0$

 $S = -0.92 \pm 0.31 \text{ (stat)} \pm 0.11 \text{ (syst)}$ $A = 0.28 \pm 0.21 \text{ (stat)} \pm 0.04 \text{ (syst)}$

The measurement results

- S is consisted with the value of $\sin 2\phi_1$ in $b \to c\bar{c}s$.

- A is consisted with the zero \rightarrow no direct *CP* violation in the SM expectation.

$B^0 \to J/\psi \pi^0$

- $b \rightarrow c\bar{c}d$ two body decays
 - Penguin diagram is not suppressed $\leftrightarrow b \rightarrow c\bar{c}s$
- Penguin and any NP will shift $S = -\sin 2\phi_1^{eff}$
- Constrain the small penguin contribution in $B^0 \rightarrow J/\psi K_S^0$ by introducing a plausible flavor SU(3) asymmetry.

 $S = -0.59 \pm 0.19 \text{ (stat)} \pm 0.03 \text{ (syst)}$ $A = -0.15 \pm 0.14 \text{ (stat)} \pm 0.04 \text{ (syst)}$

The measured CP results

- are consistent with, and supersede previous Belle results.
- S is consistent with the value of $\sin 2\phi_1$ in $b \rightarrow c\bar{c}s$.
- show penguin and any NP to $B^0 \rightarrow J/\psi K_S^0$ are small. 18

Summary

- The measurements of $\sin 2\phi_1^{eff}$ provide sensitivity to new physics.
- Using the final data sample $(772 \times 10^6 B\overline{B})$
 - $B^0 \to K_S^0 K_S^0 K_S^0 \to S = -0.71 \pm 0.23 \text{ (stat)} \pm 0.05 \text{ (syst)}$
 - $B^0 \to \pi^0 \pi^0 K_S^0 \to S = -0.92 \pm 0.31 \text{ (stat)} \pm 0.11 \text{ (syst)}$
 - $B^0 \to J/\psi \pi^0 \to S = -0.59 \pm 0.19 \,(stat) \pm 0.03 \,(syst)$
 - These results are consisted with the value of $\sin 2\phi_1$ in $b \to c\bar{c}s$.

• The result of $B^0 \rightarrow K_S^0 K_S^0 K_S^0$ will be submitted to PRD.

Backup

Systematic error

Source	S	A
Vertex reconstruction	0.031	0.038
Flavor tagging	0.002	0.004
Resolution function	0.016	0.014
Physics parameters	0.004	0.001
Fit bias	0.012	0.009
Signal fraction	0.024	0.021
Background Δt shape	0.016	0.001
SVD misalignment	0.004	0.005
Δz bias	0.002	0.004
Tag-side interference	0.001	0.008
Total	0.05	0.05

Main source of systematic error comes from non-primary charged track.

But statistical error is much larger than systematic.

- statistics: S(0.23), A(0.16)

Signal reconstruction – selection criteria and best candidate selection

- We use K_S^0 only from charged decay to avoid background.

	$B^0 \to K^0_S K^0_S K^0_S$
$K_S^0(\pi^+\pi^-)$ selection in mdst_vee2	$ \Delta M_{\pi\pi} < 10 \sigma$, nisKsfinder cut (nb_vlike>0.2)
$\Delta E \; [GeV]$	$-0.2 < \Delta E < 0.2$
$M_{bc} [GeV/c^2]$	5.2 < M_{bc}
Best candidate selection	smallest of $\chi^2 = \sum_{i=1}^3 \left(\frac{M_{\pi\pi}^i - M_{K_S^0}}{\sigma_{\pi\pi}} \right)^2$
Continuum BKG suppression	KSFW LR, <i>cosθ</i> _B , <i>cosθ</i> _T NeuroBayes output>0.08

Parameters for K_S^0 selection

Variable name	Meaning	
p_ks_lab	K_S^0 momentum in lab frame	
zdist	distance between two helices in z direction	
fl	flight length in x-y plane	
dphi	angle between K_S^0 momentum and K_S^0 direction	
dr_low	shorter distance between IP and child helix	
dr_high	longer distance between IP and child helix	
decang	angle between K_S^0 momentum (lab frame) and pion momentum (K_S^0	
	frame)	
$\operatorname{svdhit1}$	whether positive child hit SVD or not	
svdhit2	whether negative child hit SVD or not	
cdc_r1	axial wire hit number of positive child	
cdc_z1	stereo wire hit number of positive child	
cdc_r2	axial wire hit number of negative child	
cdc_z2	stereo wire hit number of negative child	

$M_{\pi^+\pi^-}$ distribution by SVD hit

- The mass range for
 - both or non pions hit the SVD: 0.478 $< M_{\pi^+\pi^-} < 0.517 < GeV/c^2$
 - Only one pion hits the SVD: 0.474 $< M_{\pi^+\pi^-} < 0.522 < GeV/c^2$

Continuum background

Dalitz plot

Compare the dalitz plot for MC and data, our evtgen model for MC generation, PHSP_CP, well describes data.

B-mesons background

 $K_{SAB,C}^{0}$: momentum order

• Using invariant mass $M_{K_{S}^{0}K_{S}^{0}}$, quasi-two-body decay are considered:

- $b \rightarrow c$ quark transition by the tree diagram \rightarrow considered as a background
 - Veto: $B^0 \to \chi_{c0} (K_S^0 K_S^0) K_S^0 \to 3.388 \ GeV/c^2 < M_{K_S^0 K_S^0} < 3.444 \ GeV/c^2$
- $b \rightarrow s$ quark transition by the penguin diagram \rightarrow considered as a signal

Signal extraction with projection

With projection

Signal extraction – validiation check by correlation

- To check any bias in signal extraction due to 14% correlation between M_{bc} and ΔE parameters.
- The 1000 signal MC samples are generated via evtgen and gsim.
- There is no bias between correlation and (signal yield/ input event)
 - The signal yield is divdied by input event to remove gsim effect.

CP fitting - background δt distribution

- Data sample: $M_{bc} < 5.26 \text{ or } 0.15 < |\Delta E| < 0.2$
 - Continuum suppression cut is not applied to increase events

CP fitting – linearity check using signal MC

- Input *S* : 0.1, 0.3, 0.5, 0.7, 0.9 with A = 0
- Input *A* : 0.1, 0.3, 0.5, 0.7, 0.9 with S = 0

CP fitting – lifetime measurement

- Using 1M signal MC with input τ_B is 1.5367
 - Fitting result: 1.5461 ± 0.0072 ps
 - Difference (fitting result input) : 0.0106 ps
- Data result
 - Fitting result: 1.4271 ± 0.1129 ps
 - PDG value $(1.520 \pm 0.004 \text{ ps})$

The result of lifetime fitting is consistent with PDG value

Compare with the previous Belle result

- Previous Belle result
 - Using $532 \times 10^{6} B \overline{B}$ (492 fb⁻¹)
 - Include $B \to K_{S}^{0}K_{S}^{0}K_{S}^{0} \to \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
 - Measured result
 - $S = -0.30 \pm 0.32 \pm 0.08$
 - $A = 0.31 \pm 0.20 \pm 0.07$
- In this analysis
 - exp 7~47 data set: 504 fb⁻¹
 - Reprocessed data (improved tracking) + improved K_S^0 efficiency (77% \rightarrow 87%)
 - Measured result
 - $S = -0.73 \pm 0.31$
 - $A = 0.16 \pm 0.20$

Compare with BaBar result

- In this analysis = $S = -0.72 \pm 0.23$ (stat) ± 0.05 (syst)
 - Purity from signal extraction : 72%
 - Number of fitted event after discard poor vertex events : 345
 - Used signal events at *CP* fitting: 345*0.72 = 248 events

• BaBar (486 M $B\overline{B}$) $S = -0.94^{+0.21}_{-0.24}$ (stat) ± 0.06 (syst)

TABLE VII. Event yields for the different event species, resulting from the maximum-likelihood fit for the time-dependent analysis. " B^+B^- ($B^0\bar{B}^0$) background" represents background from charged (neutral) *B* decays. Quoted uncertainties are statistical only.

Species	$3K^0_S(\pi^+\pi^-)$	$2K^0_S(\pi^+\pi^-)K^0_S(\pi^0\pi^0)$
Signal	201^{+16}_{-15}	62^{+13}_{-12}
Continuum	3086^{+56}_{-54}	7086^{+85}_{-83}
B^+B^- background	-54^{+29}_{-24}	45^{+34}_{-30}
$B^0 \bar{B}^0$ background	9^{+31}_{-30}	4^{+38}_{-29}

~267 events