Time-dependent CP-violation measurements at LHCb

Stefano Perazzini, on behalf of LHCb Collaboration

Istituto Nazionale di Fisica Nucleare

BEAUTY 2020, CP violation and lifetimes – 22nd September 2020

Outline

- Physics motivations
- The LHCb detector
- Key ingredients for time-dependent measurements
- Recent LHCb results
 - Time-dependent CPV in $B_s^0 \rightarrow D_s^- K^+ \pi^+ \pi^-$ (LHCb-PAPER-2020-030)
 - Time-dependent CPV in $B^0_{(s)} \rightarrow h^+ h'^-$ ($h = K, \pi$) (LHCb-PAPER-2020-029)
- Conclusions

Time-dependent CPV

The LHCb detector

- LHCb is a forward spectrometer
 - High geometrical efficiency to collect $b\overline{b}$ and $c\overline{c}$ quark pairs
 - Great time resolution (σ_t ~ 45 fs), momentum resolution ($\delta p/p$ ~ 0.4-0.6%), PID performances (RICH)

Key ingredients of TD measurements

- Determination of B flavour at production
 - Dilution factor $D_{tag} = 1 2\omega$ of the asymmetry

Asymmetry

- ω = mistag fraction
- Decay time resolution
 - Dilution factor $D_{res} = e^{-\frac{\sigma_t^2 \Delta m^2}{2}}$
 - σ_t = decay-time resolution
 - Very important for B_s^0
- Decay-time efficiency ε(t)
 - Introduced by reconstruction and selection requirements
 - Crucial for the determination of (effective) lifetimes

CP-violation in $B_s^0 \rightarrow D_s^- K^+ \pi^+ \pi^-$ decays (LHCb-PAPER-2020-030) To be posted on arXiv soon

• Study interference between $b \rightarrow c$ and $b \rightarrow u$ transitions achieved through $B - \overline{B}$ mixing

- Four decay rates with CPV parameters sensitive to CKM angle γ and B_s^0 mixing phase ϕ_s
- Strong phases in $A^u(x)$ and $A^c(x)$ in the decay depends on 5D phase space of $D_s^-K^+\pi^+\pi^-$ final state
 - Sensitivity on γ and φ_s change over the phase space
 - Perform both model-dependent and model-independent analysis over the phase space

LHCb-PAPER-2020-030

- Analysis based on full LHCb dataset ightarrow ~9 fb⁻¹
- Natural calibration sample is $B_s^0 \rightarrow D_s^- \pi^+ \pi^+ \pi^-$ decay
 - Used for flavour tagging and decay-time efficiency
 - Large statistics allow to perform precise measurement of B_s^0 mixing frequency Δm_s
 - Use mass fit to subtract background and then perform sFit [arXiv:0905.0724]

- Analysis based on full LHCb dataset \rightarrow ~9 fb⁻¹
- Natural calibration sample is $B_s^0 \rightarrow D_s^- \pi^+ \pi^+ \pi^-$ decay 800 (sd mixing frequency Δm_s LHCb Preliminary (0.2)700 arXiv:0905.0724] 600 Yield 500 E APER-2020-030 1400 LHCb Preliminary m Data 400 1200 Π. 7.5k Fit Ñ 300 $B_s \rightarrow D_s K^+ \pi^- \pi^+$ andluates 1000 0 signals N $\boxtimes B_d \rightarrow D_s K^+ \pi^- \pi^+$ 200 800 ····· Comb. bkg. 100 Part. reco. bkg. 600 🕅 MisID bkg. 0 2 8 10 400 6 t [ps] 200 5300 5400 5500 5600 5700 5200 5300 5400 5500 5600 5700 5200 $m(D_{\pi}^{+}\pi^{-}\pi^{+})$ [MeV] $m(D^{-}K^{+}\pi^{-}\pi^{+})$ [MeV]

LHCb-PAPER-2020-030

Use CPV parameters to determine γ

Model-dependent fit

Different contributions from

CP violation in charmless two-body $B_{(S)}^0$ decays (LHCb-PAPER-2020-029)

To be posted on arXiv soon

- A rich set of physics processes participates to the $B_s^0 \rightarrow h^+ h'^-$ decays $\sum_{n=0}^{180}$ (a)
 - Tree and penguin decay topologies
- CPV observables are sensitive to CKM angles γ/ϕ_3 and α/ϕ_2 , and $B^0_{(s)}$ mixing phases ϕ_s and ϕ_d
 - presence of loop diagrams introduce hadronic uncertainties but gives sensitivity to physics beyond SM

[PLB459(1999)306, PJC71(2011)1532, JHEP10(2012)029, PRD94(2016)113014]

Up to 50% non factorisable U-spin breaking effects Compatible with tree-level determinations Numbers based on Run1-only results

- Analysis based on 2015 + 2016 data \rightarrow ~ 1.9 fb⁻¹
 - Time-dependent CPV in $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$
 - Time-integrated CPV in $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^-\pi^+$
- Two strategies are used to cross-check each other

	"Simultaneous*"	"Per-event"
Fit	Simultaneous fit to $\pi^+\pi^-$, K^+K^- , $K^+\pi^-$ and π^+K^- samples	Independent fit to background-subtracted $\pi^+\pi^-$ and K^+K^- samples
Decay Time Resolution	Averaged resolution for all events	Per-event resolution as a function of decay time error
Flavour tagging	Distinct OS and SS taggers, calibrated during the fit with $B^0 \rightarrow K^+\pi^-$ decays	Single combined tagger, calibrated before the fit
Acceptance correction	Calibrated using $B^0 \to K^+ \pi^-$	Per-event swimming method (see backup slides)

*: results from this method are used for the combination with Run1

- CP asymmetries of $B^0 \to K^+\pi^$ and $B^0_s \to K^-\pi^+$ are determined
 - The time-dependent fit allows to remove effect from production asymmetry
 - Detection asymmetry is studied from prompt $D^+ \rightarrow K^+ \pi^+ \pi^-$ and $D^+ \rightarrow K^0_S \pi^+$ decays

LHCb Preliminary

$A_{C\!P}^{B^0}$	—	$-0.0824 \pm 0.0033 \pm 0.0033$
$A_{C\!P}^{B_s^0}$	=	$0.236 \pm 0.013 \pm 0.011,$

In agreement with previous determinations from LHCb, BaBar, Belle and CDF

LHCb-PAPER-2020-029

Simultaneous method

Per-event method

 $B^0 \rightarrow \pi \pi$ $B^0_{\circ} \rightarrow \pi^+ \pi^ B^0 \rightarrow K^+ \pi^-$, $\Lambda_b^0 \rightarrow p\pi^$ σ 3-Body bkg. -HCb-PAPER-2020-02 Comb. bkg. 5.6 5.8 $m_{\pi^+\pi^-}$ [GeV/c²]

10 t [ps]

LHCb Preliminary

Simultaneous method Cb-PAPER-2020-029 $C_{\pi\pi} = -0.311 \pm 0.045,$ $S_{\pi\pi} = -0.706 \pm 0.042,$ Per-event method $C_{\pi\pi}$ $= -0.338 \pm 0.048$, $S_{\pi\pi} = -0.673 \pm 0.043,$ Compatibility is measured with $\frac{1}{2}$ pseudoexperiments to be below 1σ

In agreement with previous determinations

HCb-PAPER-2020-029

17

			CP-violation	in $B_{(s)}^{0}$ -	→ h	$h^+h^{\prime -}$	dec	ays	
	Froi	m s	imultaneous method			LHCb-F	PAPER-2	020-029	
>	$C_{\pi\pi}$	=	$-0.311 \pm 0.045 \pm 0.015,$			$C_{\pi\pi}$ =	-0.320	± 0.038	ک ا
Jar	$S_{\pi\pi}$	=	$-0.706 \pm 0.042 \pm 0.013,$			$S_{\pi\pi}$ =	-0.672	± 0.034	ina
mii	$A_{CP}^{B^0}$	=	$-0.0824 \pm 0.0033 \pm 0.0033,$	Combination		$A_{CP}^{B^0} =$	-0.0831	1 ± 0.0034	іл Ті
reli	$A_{C\!P}^{B_s^0}$	=	$0.236 \pm 0.013 \pm 0.011,$	with Run1		$A_{CP}^{B_s^0} =$	0.225	± 0.012	Pre
Ч С	C_{KK}	=	$0.164 \pm 0.034 \pm 0.014,$			C_{KK} =	0.172	± 0.031	Cp
HC HC	S_{KK}	=	$0.123 \pm 0.034 \pm 0.015,$			$S_{KK} =$	0.139	± 0.032	Ē
	${\cal A}_{KK}^{\Delta\Gamma}$	=	$-0.833 \pm 0.054 \pm 0.094,$			${\cal A}_{KK}^{\Delta\Gamma}$ =	-0.897	± 0.087	
	LH	Cb-	PAPER-2020-029						
					1				
Test for the SM [PLB621(2005)126] LHCh >									
$\Delta = \frac{A_{CP}^{B^0}}{A_{CP}^{B^0_s}} + \frac{B(B_s^0 \to K^- \pi^+)}{B(B^0 \to K^+ \pi^-)} \frac{\Gamma_s}{\Gamma_d} = -0.085 \pm 0.025 \pm 0.035$									
			Should be 0) in SM > No evi	idenc	e of BSM	effects		

CP-violation in $B_{(s)}^{0}$	$h \rightarrow h^+ h'^-$ decays
From simultaneous method	LHCb-PAPER-2020-029
$\sim C_{\pi\pi} = -0.311 \pm 0.045 \pm 0.015,$	$C_{\pi\pi} = -0.320 \pm 0.038$
$S_{\pi\pi} = -0.706 \pm 0.042 \pm 0.013,$	$S_{\pi\pi} = -0.672 \pm 0.034$
$\overset{\bullet}{E}$ $A_{CP}^{B^0} = -0.0824 \pm 0.0033 \pm 0.0033$, Combinat	ion $A_{CP}^{B^0} = -0.0831 \pm 0.0034$
$\underline{P} A_{CP}^{B_s^0} = 0.236 \pm 0.013 \pm 0.011,$ with Run	$A_{CP}^{B_s^0} = 0.225 \pm 0.012$
$C_{KK} = 0.164 \pm 0.034 \pm 0.014,$	$C_{KK} = 0.172 \pm 0.031$
$\Theta_{\pm} S_{KK} = 0.123 \pm 0.034 \pm 0.015,$	$S_{KK} = 0.139 \pm 0.032$
$\mathcal{A}_{KK}^{\Delta\Gamma} = -0.833 \pm 0.054 \pm 0.094,$	${\cal A}^{\Delta\Gamma}_{KK} ~=~ -0.897~\pm 0.087$
LHCb-PAPER-2020-029	
$\sqrt{C_{KK}^2 + S_{KK}^2 + A_{KK}^2} = 0.93 \pm 0.08$ $(C_{KK}, S_{KK}, A_{KK}^{\Delta\Gamma}) \neq (0,0,-1) @ 6.5\sigma$ $(C_{KK}, S_{KK}) \neq (0,0) @ 6.7\sigma$	First observation of time-dependent CPV in B_s^0 decays!!!

Conclusions

- Most recent time-dependent CP-violation measurement from LHCb have been presented
- Measurement of CKM angle γ from time-dependent amplitude analysis of $B_s^0 \rightarrow D_s^- K^+ \pi^+ \pi^$ decays
 - Exploit full LHCb data sample
 - In agreement with World Average
- Measurement of time-dependent and time-integrated CP asymmetries in $B^0_{(s)} \rightarrow h^+ h'$
 - No evidence of BSM effect in the direct CP asymmetries of $B^0 \to K^+\pi^-$ and $B^0_s \to K^-\pi^+$
 - First observation of time-dependent CP violation in B_s^0 decays with 6.7 σ significance
 - Analysis based on a sub-sample of LHCb data → with full dataset a factor of about x2 in statistics is expected
- More time-dependent CP measurement in the pipeline with the full LHCb dataset
 - B_s^0 mixing phase from $B_s^0 \rightarrow J/\psi K^+ K^-$, $B_s^0 \rightarrow J/\psi \pi^+ \pi^- (J/\psi \rightarrow e^+ e^-, \mu^+ \mu^-)$
 - $\sin 2\beta \text{ from } B_s^0 \to J/\psi K_s^0$
 - CKM angel γ from $B_s^0 \rightarrow D_s^- K^+$
 - B_s^0 mixing phase from $B_s^0 \to \phi \phi$ and $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$
 - Many other...

Backup

The LHCb detector

- LHCb is a forward spectrometer
 - Great time resolution (σ_t ~ 45 fs), momentum resolution ($\delta p/p$ ~ 0.4-0.6%), PID performances (RICH)
 - Real time calibration of detector

The LHCb detector

• LHCb is a forward spectrometer

CP violation in $B^0 \rightarrow D^{*\pm}D^{\mp}$ [JHEP 03 (2020) 147]

- Not a pure CP-eigenstate
 - Four decay rates

d = $\pm 1 \rightarrow$ B-flavour tag r = $\pm 1 \rightarrow$ Final state tag

$$\times \left[1 - d(S_{D^*D} + r\Delta S_{D^*D})\sin(\Delta mt) + d(C_{D^*D} + r\Delta C_{D^*D})\cos(\Delta mt)\right]$$

 Receive contributions from tree and penguin diagrams

 $\frac{\mathrm{d}\Gamma(t)}{\mathrm{d}t} = \frac{e^{-t/\tau_d}}{8\tau_d} (1 + r\mathcal{A}_{D^*D})$

- Sensitive to physics beyond SM
- Sensitive to B^0 mixing phase
- If penguin contribution is small and no BSM physics is present $\rightarrow S_{D^*D} = -\sin 2\beta$

CP violation in $B^0 \rightarrow D^{*\pm}D^{\mp}$ [JHEP 03 (2020) 147]

 $\frac{1}{2}W$

Not a pure CP-eigenstate $f = D^{*+}D^-$ Four decay rates $d = \pm 1 \rightarrow B$ -flavour tag $\frac{\mathrm{d}\Gamma(t)}{\mathrm{d}t} = \stackrel{e}{=} S_{D^*D} = \frac{1}{2}(S_f + S_{\bar{f}}),$ $\Delta S_{D^*D} = \frac{1}{2}(S_f - S_{\bar{f}}),$ $C_{D^*D} = \frac{1}{2}(C_f + C_{\bar{f}}),$ $C_{D^*D} = \frac{1}{2}(C_f - C_{\bar{f}}),$ $\mathcal{A}_{D^*D} = \mathcal{A}_{f\bar{f}}.$ $\mathcal{A}_{D^*D} = \mathcal{A}_{f\bar{f}}.$ $S_f = \frac{2\mathcal{I}m\lambda_f}{1+|\lambda_f|^2}, \qquad C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}, \qquad \lambda_f = \frac{q}{n}\frac{A_f}{A_f}$ $\mathcal{A}_{f\bar{f}} = \frac{\left(|A_f|^2 + |\bar{A}_f|^2\right) - \left(|A_{\bar{f}}|^2 + |\bar{A}_{\bar{f}}|^2\right)}{\left(|A_f|^2 + |\bar{A}_f|^2\right) + \left(|A_{\bar{f}}|^2 + |\bar{A}_{\bar{f}}|^2\right)},$ Sensitive If penguin contribution is small and no BSM physics

is present $\rightarrow S_{D^*D} = -\sin 2\beta$

CP violation in $B^0 \rightarrow D^{*\pm}D^{\mp}$

8 Decay time [ps]

1200 $Candidates / (6 MeV/c^2)$ Candidates / $(6 \,\mathrm{MeV}/c^2)$ 600 F LHCb LHCb Total Total 1000 Run 2 Run 2 500 $\rightarrow D^{*\pm}D^{\mp}$ $B^0 \rightarrow D^{*\pm}D^{\mp}$ $B^0_* \rightarrow D^{*\pm}D^{\mp}$ 800 400 $B^0 \rightarrow D^+ D^*$ 600 300 $B^0_* \rightarrow D^{*+}D^*$ Comb. bkg 400 ---- Comb. bkg 200 200100F Pull Pull 5400 5000 5200 5400 5600 5000 52005600 $m_{D^{*\pm}D^{\mp}}$ [MeV/ c^2] $m_{D^{*\pm}D^{\mp}}$ [MeV/ c^2] Signal yield $/ (0.125 \, \text{ps})$ Asymmetry LHCb 0.4 10^{2} 0.3E LHCb 0.2 0. 10 -0.-0.2 -0.3

-0.4

8

Decay time [ps]

10

JHEP 03 (2020) 147

Pull

2

About 6k signal candidates in total

- Use full Run1+Run2 sample \rightarrow ~9 fb⁻¹
- Final state reconstructed as $B^0 \rightarrow D^{*+}(D^0\pi^+)D^-$ with $D^{0} \to K^{-}\pi^{+}, D^{0} \to K^{-}\pi^{+}\pi^{-}\pi^{+}, D^{-} \to K^{-}\pi^{+}\pi^{-}$

- Simultaneous analysis of four subsamples: final state x Run1/2

Correction for detection asymmetry between $D^{*+}D^{-}/$ $D^{*-}D^+$ using prompt $D^- \rightarrow K^-\pi^+\pi^-$ decays kinematically weighted to match signal distributions

CP violation in $B^0 \rightarrow D^{*\pm}D^{\mp}$

5600

8

10 Decay time [ps]

Candidates / (6 MeV/ c^2) 600 F LHCb LHCb Total Total 1000 Run 2 Run 2 500 $B^0 \rightarrow D^{*\pm}D^{\mp}$ $B^0 \rightarrow D^{*\pm}D^{\mp}$ $\rightarrow D^{*\pm}D^{\mp}$ $B^0_* \rightarrow D^{*\pm}D^{\mp}$ 400 $\rightarrow D^+D^*$ $B^0 \rightarrow D^+ D^*$ $B^0 \rightarrow D^{*+} D^*$ 300 $B^0_- \rightarrow D^{*+}D^{*-}$ --- Comb. bkg ---- Comb. bkg. 200200100 Pull Pull 5400 5600 5000 5200 5400 5000 5200 $m_{D^{*\pm}D^{\mp}}$ [MeV/ c^2] $m_{D^{*\pm}D^{\mp}}$ [MeV/ c^2] Signal yield $/ (0.125 \, \text{ps})$ Asymmetry LHCb 0.4 10^{2} LHCb 0.3E 0.2 0 10 -0 -0.2-0.3-0.4 Pull JHEP 03 (2020) 147 2 8 10

Decay time [ps]

About 6k signal candidates in total

JHEP 03 (2020) 147

$$\begin{split} S_{D^*D} &= -0.861 \pm 0.077 \,(\text{stat}) \pm 0.019 \,(\text{syst}) \,, \\ \Delta S_{D^*D} &= 0.019 \pm 0.075 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \,, \\ C_{D^*D} &= -0.059 \pm 0.092 \,(\text{stat}) \pm 0.020 \,(\text{syst}) \,, \\ \Delta C_{D^*D} &= -0.031 \pm 0.092 \,(\text{stat}) \pm 0.016 \,(\text{syst}) \,, \\ \mathcal{A}_{D^*D} &= 0.008 \pm 0.014 \,(\text{stat}) \pm 0.006 \,(\text{syst}) \,. \end{split}$$

- Compatible with determination from BaBar and Belle [PRD79(2009)032002, PRD85(2012)091106]
- No evidence of CPV in the decay •
 - $-C_{D^*D} \approx 0$ and $A_{D^*D} \approx 0$
 - Small contribution from penguins

• Fixing
$$C_{D^*D} = 0$$
 and $A_{D^*D} = 0$

 $S_{D^*D} = -\sin 2\beta = -0.839 \pm 0.070 \rightarrow 1.9\sigma$ from SM

Systematic uncertainties for simultaneous method

Source	$C_{\pi\pi}$	$S_{\pi\pi}$	$A^{B^0}_{C\!P}$	$A^{B^0_s}_{CP}$	C_{KK}	S_{KK}	$\mathcal{A}_{KK}^{\Delta\Gamma}$
Time acceptance							
Model	0.0048	0.0027	0.0005	0.0005	0.0028	0.0029	0.0450
Calibration channel	0.0028	0.0013	0.0003	0.0057	0.0009	0.0009	0.0470
Transport between modes	0.0038	0.0019	0.0010	0.0001	0.0010	0.0007	0.0470
Time resolution							
Width	0.0015	0.0026	0.0001	0.0001	0.0087	0.0095	0.0000
Bias	0.0003	0.0003	0.0000	0.0000	0.0035	0.0034	0.0000
Average	0.0004	0.0007	0.0000	0.0000	0.0038	0.0038	0.0043
Input parameters	0.0029	0.0018	0.0001	0.0001	0.0055	0.0070	0.0471
B_s^0 from B_c^+	-	—	—	—	0.0040	0.0032	0.0036
Flavour tagging							
SSK calibration	-	_	_	_	0.0033	0.0042	0.0001
Calibration model	0.0012	0.0013	0.0000	0.0000	0.0037	0.0034	0.0012
$H_b \rightarrow h^+ h'^-$ mass model	0.0065	0.0078	0.0004	0.0074	0.0017	0.0018	0.0057
Cross-feed model	0.0075	0.0044	0.0001	0.0001	0.0011	0.0001	0.0015
Comb. bkg. model	0.0057	0.0030	0.0001	0.0015	0.0005	0.0005	0.0064
Part. reco. model	0.0043	0.0063	0.0005	0.0036	0.0012	0.0013	0.0113
PID in fit model	0.0020	0.0031	0.0002	0.0016	0.0004	0.0006	0.0013
PID asymmetry	-	_	0.0028	0.0028	_	_	_
Det. asymmetry	_	_	0.0012	0.0012	_	_	_
Total	0.0145	0.0128	0.0033	0.0108	0.0137	0.0149	0.0944

Per-event decay-time efficiency (Swimming)

- Acceptance corrected on per-event basis
- B-hadrons are moved along their momentum vector and decay time biasing selections are re-evaluated ("swimming method")
- Each hypothetical decay time is assigned a 0 (not accepted) or 1 (accepted). Transition times are called turning points
 - Acceptance is a step function within the "start" and "end" turning points of the event
- Biasing selections are:
 - Mother and daughter IP χ^2
 - DIRA
 - Flight distance χ^2
 - BDT
- Additional requirements on:
 - Radial flight distance
 - VELO acceptance
 - HLT1TrackMVA (it's an OR of the selected tracks)

CP-violat	ion in $B_{(s)}^{0} \rightarrow$	$h^+h'^-$ decays
Run1 result PRD98(2018)032004		Run1 result
$C_{\pi^+\pi^-} = -0.34 \pm 0.06 \pm 0.01,$		$C_{\pi^+\pi^-} = -0.34 \pm 0.06 \pm 0.01,$
$S_{\pi^+\pi^-} = -0.63 \pm 0.05 \pm 0.01,$		$S_{\pi^+\pi^-} = -0.63 \pm 0.05 \pm 0.01,$
$C_{K^+K^-} \equiv 0.20 \pm 0.06 \pm 0.02,$ $S_{K^+K^-} = 0.18 \pm 0.06 \pm 0.02,$	Updated input	$\begin{array}{rcl} C_{K^+K^-} &=& 0.19 \ \pm 0.06 \ \pm 0.02, \\ \hline S_{K^+K^-} &=& 0.18 \ \pm 0.06 \ \pm 0.02, \end{array}$
$A^{\Delta\Gamma}_{K^+K^-} = -0.79 \pm 0.07 \pm 0.10,$	parameters	$A^{\Delta\Gamma}_{K^+\!K^-} ~=~ -0.97~\pm 0.07~\pm 0.10,$
$A_{CP}^{B^0} = -0.084 \pm 0.004 \pm 0.003,$		$A_{C\!P}^{B^0} = -0.084 \pm 0.004 \pm 0.003,$
$A_{CP}^{B_s^0} = 0.213 \pm 0.015 \pm 0.007,$		$A_{CP}^{B_s^0} = 0.213 \pm 0.015 \pm 0.007,$

Input parameters

Parameter	Value	
Δm_d	$0.5065 \pm 0.0019 \text{ ps}^{-1}$	
Γ_d	$0.6579 \pm 0.0017 \text{ ps}^{-1}$	
$\Delta\Gamma_d$	0	
Δm_s	$17.757 \pm 0.021 \text{ ps}^{-1}$	
Γ_s	$0.6654 \pm 0.0022 ~{ m ps}^{-1}$	
$\Delta\Gamma_s$	$0.083 \pm 0.007 ~{ m ps}^{-1}$	Old WA
$ ho(\Gamma_s,\Delta\Gamma_s)$	-0.292	

Run1 result

Golden modes from LHCb

- Time-dependent CPV is the golden way to access B^0 and B_s^0 mixing phases
 - − Golden modes are $B_s^0 \rightarrow J/\psi h^+ h'^$ and B⁰ → $J/\psi K_s^0$
 - Current LHCb measurements based on partial sample of LHCb dataset → potential to relevant reduction in uncertainties
 - LHCb is working hard on legacy analyses of these mode

EPJC79(2019)706

twice the effective luminosity