Measurement of the Unitarity Triangle angle γ at LHCb

Anton Poluektov

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

21-24 September 2020

Beauty 2020

On behalf of the LHCb collaboration

Anton Poluektov

Unitarity Triangle measurements

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Sensitivity to BSM effects from the global consistency of various measurements

Measurement of γ at LHCb

Unitarity Triangle measurements

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Sensitivity to BSM effects from the global consistency of various measurements

SM reference measurement: γ from trees

Unitarity Triangle angle γ/ϕ_3

- Measured entirely in tree-level decays.
- All hadronic parameters can be constrained from experiment

 \Rightarrow theoretically very clean (uncertainty < 10^{-7})

[Brod, Zupan, JHEP 1401 (2014) 051]

Combination of many different modes:

- Time-integrated asymmetries in $B \rightarrow DK, B \rightarrow DK^*, B \rightarrow DK\pi$ with $D \rightarrow hh, hhhh$ ("ADS", "GLW")
- Dalitz plot analyses of $D^0 \rightarrow K^0_{\rm S} h^+ h^-$ from $B \rightarrow DK, B \rightarrow DK^*$ ("Dalitz" or "BPGGSZ")
- Time-dependent analyses, e.g. $B_s^0 \to D_s K$, $B^0 \to D \pi$

[Talk by Stefano Perazzini, $B_s^0 \rightarrow D_s^+ K \pi \pi$]

 $\begin{array}{c} CP \text{-violating rate for } B^{\pm} \to D(\to f) K^{\pm} \text{ decays:} \\ \Gamma(B^{\pm} \to D(\to f) K^{\pm}) \propto r_D^2 + r_B^2 + 2\kappa r_D r_B \cos(\delta_B - \delta_D \pm \gamma) \\ r_B : \text{ ratio of } b \to u \text{ and } b \to c \text{ amplitudes} \\ r_D : \text{ ratio of } D^0 \to f \text{ and } \overline{D}^0 \to f \text{ amplitudes} (\equiv 1 \text{ for } D_{CP}) \\ \delta_B \text{ and } \delta_D : \text{ corresponding strong phase differences} \\ \kappa : \text{ coherence factor } (\equiv 1 \text{ for } 2\text{-body decays}) \end{array}$

Combination of several D and B decay modes used to constrain γ

0.18

γ [°]

100 120

γ measurement in B ightarrow DK, $D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$ (GLS)

Most of the LHCb measurements are using either Run I data (3 fb⁻¹, 2011-2012) or including part of Run II (\sim 5 fb⁻¹ up to 2016) datasets

First update with full Run I+II LHCb dataset (9 fb⁻¹, 2011-2018) [JHEP 06, 40 (2020)]

Two different amplitudes:

 $B^{\pm} \rightarrow D(K^0_{\rm S} K^{\pm} \pi^{\mp}) K^{\pm}$ ("same sign", SS)

■
$$B^{\pm} \rightarrow D(K^0_{\mathbb{S}}K^{\mp}\pi^{\pm})K^{\pm}$$

("opposite sign", OS)

Large coherence around K^{*+} mass measured by CLEO:

[PRD 85 092016 2012]

 $\kappa_D = 0.94 \pm 0.12 \ (\pm 100 \ {
m MeV})$ Use K^{*+} region for γ constraints.

γ measurement in ${\cal B} ightarrow {\cal D}{\cal K}, \ {\cal D} ightarrow {\cal K}_{ m S}^0 {\cal K}^\pm \pi^\mp$ (GLS)

[JHEP 06, 40 (2020)]

No significant CPV observed (yet). To be used as input in γ combination

Measured asymmetries and ratios:

γ from $B^\pm \to D K^\pm$, $D \to K^0_{\rm S} \pi^+ \pi^-$

Information on γ from Dalitz plot analysis of $D \to K_{\rm S}^0 \pi^+ \pi^-$ from $B^{\pm} \to D K^{\pm}$. Dalitz plot density: $d\sigma(m_+^2, m_-^2) \sim |A|^2 dm_+^2 dm_-^2$, where $m_{\pm}^2 = m_{K_S \pi^{\pm}}^2$ Flavour D amplitude: $A_D(m_+^2, m_-^2)$

Amplitude of $D \to K^0_{
m S} \pi^+ \pi^-$ from $B^+ \to D K^+$:

$$A_B(m_+^2, m_-^2) = A_D(m_+^2, m_-^2) + r_B e^{i\delta_B + i\gamma} A_D(m_-^2, m_+^2)$$

Need to know $A_D(m_+^2, m_-^2)$, both amplitude and phase (or, more precisely, phase difference between (m_+^2, m_-^2) and (m_-^2, m_+^2)).

Model-dependent: obtain A_D from $D \to K^0_S \pi^+ \pi^-$ fit to the isobar model \Rightarrow model uncertainty

Model-independent: obtain phase difference info from $e^+e^- \rightarrow D^0\overline{D}^0$ decays (CLEO, BES-III)

Full LHCb dataset: 2011–2018 (Run I + II), $\int \mathcal{L}dt = 9$ fb⁻¹ at $\sqrt{s} = 7, 8, 13$ TeV Samples used: $B^{\pm} \rightarrow Dh^{\pm}$ $(h = K, \pi)$ with $D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ and $D \rightarrow K_{\rm S}^0 K^+ K^-$

 $\sim 15k$ events

Signal sample with significant CPV

 $\sim 210k$ events

High-stats sample with low CPV for data-driven acceptance

New!

Mostly flavour-specific $D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ with very small admixture of opposite flavour $r_B \simeq 0.005$.

Larger admixture of opposite-flavour amplitude, $r_B \simeq 0.1$.

CP asymmetry now visible by eye.

Larger admixture of opposite-flavour amplitude, $r_B \simeq 0.1$.

CP asymmetry now visible by eye.

[LHCb-CONF-2020-001]

Additional sensitivity from $D \rightarrow K^0_S K^+ K^-$ final state.

Binned model-independent fit

[Talk by Jim Libby, PRL 124, 241802 (2020)]

Physics parameters: $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$, $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$,

Strong phase parameters: c_i , s_i measured by CLEO and BES-III from quantum correlations in $e^+e^- \rightarrow D\overline{D}$ decays.

BES-III measurement [PRL 124, 241802 (2020)] used for the 1st time, ×4 stats of CLEO

Flavour-specific bin yield fractions: F_i , shared between $B \rightarrow DK$ and $B \rightarrow D\pi$

Binned model-independent fit

Physics parameters: $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$, $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$,

Strong phase parameters: c_i , s_i measured by CLEO and BES-III from quantum correlations in $e^+e^- \rightarrow D\overline{D}$ decays.

BES-III measurement [PRL 124, 241802 (2020)] used for the 1st time, ×4 stats of CLEO

Flavour-specific bin yield fractions: F_i , shared between $B \rightarrow DK$ and $B \rightarrow D\pi$

Data-driven acceptance

Aim for a few degree precision, experimental systematics can already be a problem. New fitting technique implemented to reduce syst. uncertainty

$$N_{i}^{\pm} = h_{\pm} \left[F_{i} + (x_{\pm}^{2} + y_{\pm}^{2}) F_{-i} + 2\sqrt{F_{i}F_{-i}} (x_{\pm}c_{i} + y_{\pm}s_{i}) \right]$$

Bin yield fractions F_i :

- yields of flavour-specific $D^0 \to K^0_{\rm S} \pi^+ \pi^-$ decay in bins.
- Include effects of non-uniform acceptance over Dalitz plot

Previous analysis used $B
ightarrow D^0 \mu \nu$ decays

■ Trigger and offline selection somewhat different ⇒ systematics.

Current analysis:

- Use $B \rightarrow D\pi$ decay with identical trigger and offline selection
- Use the same expression as above, account for small opposite-flavour admixture with the same weak phase γ:

$$x_{\pm}^{D\pi} + iy_{\pm}^{D\pi} = (x_{\pm} + iy_{\pm}) \times \xi^{D\pi}$$
free parameters
$$s_{\xi^{O,\pi}} \times s_{\xi^{O,\pi}}$$

• F_i and complex $\xi^{D\pi}$ are free parameters

Results

Fit results for CPV observables:

[LHCb-CONF-2020-001]

Large CP asymmetry in certain phase space regions:

Anton Poluektov

Measurement of γ at LHC

Results

Binned fit results and constraints on physics parameters:

$$\begin{split} x^{DK}_{-} &= (\begin{array}{c} 5.6 \pm 1.0 \pm 0.2 \pm 0.3) \times 10^{-2}, \\ y^{DK}_{-} &= (\begin{array}{c} 6.5 \pm 1.1 \pm 0.3 \pm 0.4) \times 10^{-2}, \\ x^{DK}_{+} &= (-9.2 \pm 1.0 \pm 0.2 \pm 0.2) \times 10^{-2}, \\ y^{DK}_{+} &= (-1.2 \pm 1.2 \pm 0.3 \pm 0.3) \times 10^{-2}, \\ x^{D\pi}_{\xi} &= (-5.3 \pm 2.0 \pm 0.3 \pm 0.2) \times 10^{-2}, \\ y^{D\pi}_{\xi} &= (\begin{array}{c} 1.0 \pm 2.3 \pm 0.5 \pm 0.3) \times 10^{-2}, \\ y^{D\pi}_{\xi} &= (\begin{array}{c} 1.0 \pm 2.3 \pm 0.5 \pm 0.3) \times 10^{-2}, \\ y^{D\pi}_{\xi} &= (\begin{array}{c} 287^{+26}_{-27})^{\circ}. \\ \end{array} \end{split}$$

- The most precise single measurement of γ .
- Using full Run I + Run II sample by LHCb, $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K^0_{\rm S} h^+ h^ (h = K, \pi)$
- New data-driven technique to account for non-uniform acceptance
- New strong phase measurement by BES-III used
- Statistically dominated, $\sigma(syst) \sim 1^{\circ}$, $\sigma(CLEO+BES) \sim 1^{\circ}$.

Many modes	are	combined	to	constrain	γ :
------------	-----	----------	----	-----------	------------

[LHCb-CONF-2018-002]

B decay	D decay	Method	Ref.	Dataset [†] Status since last co		
					bination [3]	
$B^+ \to DK^+$	$D \rightarrow h^+ h^-$	GLW	[14]	Run 1 & 2	Minor update	
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^-$	ADS	[15]	Run 1	As before	
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[15]	Run 1	As before	
$B^+ \rightarrow DK^+$	$D \rightarrow h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1	As before	
$B^+ \to DK^+$	$D \rightarrow K_{\rm s}^0 h^+ h^-$	GGSZ	[17]	Run 1	As before	
$B^+ \to DK^+$	$D \rightarrow K_s^0 h^+ h^-$	GGSZ	[18]	Run 2	New	
$B^+ \to DK^+$	$D \rightarrow K_{\rm s}^0 K^+ \pi^-$	GLS	[19]	Run 1	As before	
$B^+ \to D^* K^+$	$D \rightarrow h^{+}h^{-}$	GLW	[14]	$\operatorname{Run} 1 \And 2$	Minor update	
$B^+ \rightarrow DK^{*+}$	$D \rightarrow h^+ h^-$	GLW/ADS	[20]	Run 1 & 2	Updated results	
$B^+ \rightarrow DK^{*+}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[20]	$\operatorname{Run} 1 \And 2$	New	
$B^+ ightarrow DK^+ \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	GLW/ADS	[21]	Run 1	As before	
$B^0 ightarrow DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	Run 1	As before	
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow h^+ h^-$	GLW-Dalitz	[23]	Run 1	As before	
$B^0 ightarrow DK^{*0}$	$D \rightarrow K_s^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1	As before	
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1	Updated results	
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1	New	

 † Run 1 corresponds to an integrated luminosity of 3 $\rm fb^{-1}$ taken at centre-of-mass energies of 7 and 8 TeV . Run 2 corresponds to an integrated luminosity of 2 $\rm fb^{-1}$ taken at a centre-of-mass energy of 13 TeV .

The latest full Run I+II measurements reported above are not yet included!

γ combination by LHCb

- $D \rightarrow hh$ (ADS/GLW) provide strong constraints in r_B, δ_B, γ space, but ambiguities and non-gaussian uncertainties.
- $D \rightarrow K^0_{\rm S} hh$ modes break ambiguities
- Different correlation patterns result in combined γ uncertainty lower than plain average.
- Different analysis approaches (rates, Dalitz, time-dep) allow for better control of systematic uncertainties.

100

[LHCb-CONF-2018-002]

Beauty 2020, 21–24 September 2020

50

150

γ [°]

Two new measurements of γ are published employing full Run I+II LHCb dataset (2011–2018).

- Dalitz plot analysis of $D \to K^0_{s}hh$ from $B \to Dh$ $(h = K, \pi)$.
 - The most precise single measurement: $\gamma = (69 \pm 5)^{\circ}$
 - New data-driven technique to reduce systematic uncertainty
 - New measurement of strong phase parameters from BES-III
- CP asymmetry in B o DK, $D o K^0_{
 m s} K^\pm \pi^\mp$

LHCb combination of γ measurements will be updated soon, expect $\sigma(\gamma) \sim 4^{\circ}$.

More analyses to be updated with Run I+II dataset (+possibly new analysis techniques), improve precision even further.

Backup

LHCb experiment

Covers forward region (maximum of *c* and *b* production)

Covers forward region (maximum of c and b production)
 Good vertexing: measure B⁰ and B⁰_s oscillations, reject prompt background

Covers forward region (maximum of c and b production)

- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking

LHCb

One-arm spectrometer optimised for studies of beauty and charm decays at LHC

- Covers forward region (maximum of *c* and *b* production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state

LHCb

One-arm spectrometer optimised for studies of beauty and charm decays at LHC

- Covers forward region (maximum of *c* and *b* production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state
- Efficient trigger, including fully hadronic modes

 3 fb^{-1} in 2011 and 2012 (Run I, $\sqrt{s} = 7, 8 \text{ TeV}$) 6 fb⁻¹ in 2015-2018 (Run II, $\sqrt{s} = 13 \text{ TeV}$, higher *b* CS): Analyses ongoing

 $3 \,\text{fb}^{-1}$ in 2011 and 2012 (Run I, $\sqrt{s} = 7, 8 \,\text{TeV}$) 6 fb^{-1} in 2015-2018 (Run II, $\sqrt{s} = 13 \,\text{TeV}$, higher *b* CS): Analyses ongoing

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills
- Since 2015: *split trigger*
 - All 1st stage (HLT1) output stored on disk
 - Used for real-time calibration and alignment
 - 2nd stage (HLT2) uses offline-quality calibration
 - 5 kHz of 12 kHz to Turbo stream:
 - Candidates produced by trigger are stored
 - No raw event ⇒ smaller event size
 - Used for high-yield channels (charm, J/ψ , ...)

Analysis techniques

Time-dependent measurements

Measure lifetime based on vertex displacement from the primary vertex of *pp* interaction.

Large boost provides excellent time resolution ($\sigma_t \simeq 45$ fs)

Flavor tagging

Need to identify B flavour at production time (different from flavour at decay time due to oscillations).

Use decay products of the opposite-side B (OS) and π , K associated with same-side B (SS).

Effective tagging power $\epsilon_{\rm tag} D^2 = 3.7\%$.

LHCb upgrade I

Anton Poluektov

γ from time-dependent analyses

Interference between $b \rightarrow u$ and $b \rightarrow c$ amplitude from B_s^0 mixing. Comparable magnitudes $r = |\frac{p}{q} \frac{A_f}{A_{\overline{f}}}| \simeq 0.4$.

Similar technique with $B^0 \rightarrow D\pi$ (but negligible $\Delta\Gamma_d$, small $r \simeq 0.02 \Rightarrow$ only two observables $S_f, S_{\overline{f}}$).

Measure $2\beta + \gamma$ with the external input for r (from SU(3) $B^0 \rightarrow D_s \pi$)

Systematic uncertainties: background, Δm_s , time acceptance, resolution, flavour tagging. All data-driven.

Prospects for $\gamma: B \rightarrow DK \text{ GGSZ}$

• Critical uncertainty: measurement of strong phase difference in bins. Currently: $\simeq 1^{\circ}$ (CLEO, BES-III).

Further reduction is possible:

- Expect BES-III to contribute with larger dataset.
- Technique to obtain $D^0 \overline{D}^0$ phase difference from charm mixing fits at LHCb [JHEP 10 (2012) 185]
- Use other $B \to DX$ decays to overconstrain phase difference, such as $B \to DK\pi$, $D \to K_S^0 \pi \pi$ [PRD 97, 056002 (2018)]
- $B \rightarrow DK$ decays themselves constrain phase difference for sufficiently large dataset [preliminary toy MC studies]
- Other uncertainties depend on control or MC samples.

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

B ightarrow DK, $D^0 ightarrow K_{ m s}^0 \pi^+ \pi^-$: can we do better with the same stats?

Binned approach reduces statistical precision compared to unbinned fit.

Carefully optimised binning has $\simeq 80\%$ power of the unbinned fit.

Can we do better?

[AP, EPJC (2018) 78: 121]

Weight functions instead of bins:

$$\int_{\mathcal{D}_i} \dots dz \quad \rightarrow \quad \int_{\mathcal{D}} \dots \times w_i(z) \, dz$$

E.g. **Fourier expansion** of strong phase difference:

$$w_{2n}(z) = \cos(n\Delta\delta_D(z));$$

 $w_{2n+1}(z) = \sin(n\Delta\delta_D(z))$

Somewhat better results (in toy MC) than binned approach, fewer free parameters Possible further optimisation of the family of weight functions.

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

Main systematic uncertainties with rate and asymmetry measurements:

- Production and instrumentation asymmetries
- Backgrounds and their asymmetries.

All data-driven, so assumed to scale with data sample.

Additional subtle point to be taken into account:

- Charm mixing and CP violation in charm
- Matter effects for K⁰_S final states

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K} \ (1 < q^2 < 6 {\rm GeV}^2 c^4)$	0.1 274	0.025	0.036	0.007	-
R_{K^*} $(1 < q^2 < 6 \text{GeV}^2 c^4)$	0.1 275	0.031	0.032	0.008	-
$R_{\phi}, R_{pK}, R_{\pi}$		0.08, 0.06, 0.18	-	$0.02, \ 0.02, \ 0.05$	-
CKM tests					
γ , with $B_s^0 \rightarrow D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ 136	4°	-	1°	-
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \rightarrow J/\psi \phi$	49 mrad 44	14 mrad	-	4 mrad	22 mrad 610
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad 49	35 mrad	-	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	_	11 mrad	Under study 611
a_{sl}^s	33×10^{-4} 211	$10 imes 10^{-4}$	-	3×10^{-4}	
$ V_{ub} / V_{cb} $	6% 201	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% 264	34%	-	10%	21% 612
$\tau_{B^0_s \rightarrow \mu^+ \mu^-}$	22% 264	8%	_	2%	
$S_{\mu\mu}$	_	-	-	0.2	-
$b \rightarrow c \ell^- \bar{\nu_l}$ LUV studies					
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	0.002	-
$R(J/\psi)$	0.24 220	0.071	-	0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} 613	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	-
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	-
$x \sin \phi$ from $D^0 \to K^+ \pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	-
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0 \pi \pi) \ 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	-

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]