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Motivation & Background

• In the Standard Model, 
Lepton Flavour 
Universality (LFU) is the 
assumption that, in the 
massless limit, there is a 
universality of the lepton 
couplings to the vector 
bosons, i.e. ge=gµ=gτ=gℓ 


• LFU is tested by 
comparing the decay rates 
of (semi-)leptonic 
processes that differ only 
by lepton flavour
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Motivation & Background
• LFU is well constrained in 

charged current 
interactions at low 
momentum transfer by 
tests in tau decays and 
light meson decays


• However, some tests in B-
meson decays show some 
tension with the SM


• These tests can be 
sensitive to many areas of 
new physics and are 
complimented by tests 
using on-shell vector 
bosons
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• Tests in on-shell W boson decays 
put tight constraints on LFU 
between electrons & muons


• The constraints between light 
leptons and taus are not as clear


• The combined LEP results are the 
most precise (~2.5% precision) 
and 2.6σ high compared to SM


• Can precisely test LFU in taus and 
muons in on-shell W bosons using 
large ATLAS dataset


• If the LEP central value could be 
replicated, a precision of at least 
1-2% would be required to confirm 
non-universal couplings


• Such precision not previously 
thought possible at a hadron 
collider 

Motivation & Background
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Analysis Strategy

• The LHC is a top quark factory — over 100 million top 
quark pairs produced in ATLAS in Run-2


• Assuming ~100% decay via charged current means 
there is a huge on-shell W boson dataset to make use of


• With two W bosons per event, can use a tag-and-probe 
approach to measure R(τ/µ)=B(W→τν)/B(W→µν)


• Use tag lepton to trigger the event, probe muon to 
perform measurement


• The probe avoids trigger SF uncertainties and high pT 
single lepton trigger requirements


• This enables us to take advantage of ATLAS’s excellent 
muon reconstruction across wide range of pTµ 

• This analysis goes down to 5 GeV


• Which in turn allows us to avoid large hadronic tau 
reconstruction uncertainties by only using leptonic tau 
decays


• Lots of correlated uncertainties cancel
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Analysis Strategy

• µ from τ can be distinguished by their 
larger transverse impact parameter (|d0µ|) 
and different transverse momenta (pT) 
spectra (as shown in doodles)→


• τ→ℓν has been previously very 
precisely (0.26%) measured, so this 
should not dominate at our targeted 
precision


• Perform 2-D fit of the probe lepton in pTµ 
and |d0µ|, allow  overall rate of top events 
to float along with  R(τ/µ). This allows 
best separation between prompt muons, 
muons from intermediate tau and muons 
from hadronic decays
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Event selection
• Standard dileptonic tt̄ selection:


• ≥2 b-tagged jets, 2 oppositely 
charged leptons, Z boson veto 
for dimuon channel


• Tag lepton (e or µ) must pass 
single lepton trigger 
requirements


• Probe muon must have pTµ>5 
GeV


• Remaining backgrounds are 
Z(→µµ)+bb and muons from 
hadronic decays


• This gives two channels: eµ 
and µµ

tt̄ candidate event reconstructed with one electron, one muon and two b-tag 
jets, recorded in 2016.
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Transverse Impact Parameter (|d0µ|)
• Measured as the closest 

approach of the track to the 
beamline in the transverse plane


• Using beamspot decreases 
dependence on the physical 
process


• |d0µ| of prompt muons and |d0µ| 
resolution of non-prompt muons 
are separately calibrated in 33 
kinematic bins of pT and η using 
Z→µµ events in data


• Use shapes as templates in fit to 
extract R(τ/µ)


• See improved data/MC 
agreement


• Systematic uncertainty due to 
application of shape from Z→µµ 
to tt̄ signal region
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Backgrounds
Muons from hadron decays ( µ(hadron decay))

• The most significant background at large |d0µ| is 
muons originating in b- and c- decays


• Estimate the normalisation using a same-sign (SS) 
control region


• Correct prompt contributions using high pTµ 
region


• Obtain normalisation scale factor by taking the SS 
rate in data (subtracting corrected prompt) 


• Divide by SS rate in MC


• Simulation is used to extrapolate from SS to OS, and 
for the |d0µ| distribution shape


• Data and simulation agree within uncertainties in 
control region — gives confidence that |d0µ| and pTµ 
of µ(hadron decay) are well modelled


• Main uncertainties from limited statistics in SS 
control region and from MC modelling, with small 
uncertainty due to the correction to prompt 
contributions
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Backgrounds
Z(→µµ)+bb
• The µµ channel also sees significant 

background contribution at low |d0µ| from 
Z(→µµ)+bb


• Normalisation obtained from data


• Use nominal selection without a Z-
veto


• Fit dimuon invariant mass between 50 - 
140 GeV


• Use Voigt profile (Breit Wigner 
⊕Gaussian) for Z→µµ resonance


• 3rd-order Chebychev polynomial for 
everything else


• Tested other functions to provide a 
systematic uncertainty 
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Uncertainties
Reconstruction
• The measurement relies on precise muon reconstruction


• Uncertainties on muon efficiency corrections are most important 


• pT dependent scale factors correct MC to data


• They affect prompt µ and τ→µ differently which affects R(τ/µ)


• Muon isolation (~9% of total) and low pT muon identification scale 
factors (~7.5% of total) are most important of these


• Pile up modelling is also important (~2% of total)


• Simulated events are reweighted to different ⟨µ⟩ to provide an uncertainty


• Impact on R(τ/µ) is mostly due to residual effect on pTµ modelling


• Detector & reco uncertainties make up ~40% of total systematic uncertainty
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Uncertainties
Modelling
• Monte Carlo generator uncertainties are important for pTµ and |d0µ| modelling


• To improve the modelling of pT, the simulated tt̄ events are reweighted to NNLO in QCD and 
EW in pT(t)


• Different generator components are varied:


• Amount of initial state radiation (ISR) and final state radiation (FSR)


• A14 eigen-tune variations of the strong coupling αs


• Factorisation and renormalisation scales


• Powheg hdamp parameter


• NNLO pT(t) reweighting


• Parton shower and hadronisation


• For prompt µ and τ→µ uncertainty separated into 4 components


• Low pTµ, middle pTµ, high pTµ (norm), high pTµ shape


• Theory makes up ~30% of systematic uncertainty, which is dominated by PS variations

13



Fit model
• R(τ/µ) is extracted from profile likelihood fit performed in 2-D with


• Three bins in pTµ = [5,10,20,250] GeV,


• (best separation between τ→µ, prompt µ and µ(hadron decay))


• Eight bins in |d0µ| = [0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15, 0.5] mm,


• (Optimised to maximise sensitivity without making it hard to get good 
convergence)


• In two channels eµ and µµ


• 48 bins total


• Two free floating parameters: R(τ/µ) and k(tt̄)


• k(tt̄) is a constant scaling factor applied to prompt µ, τ→µ, tt̄ and Wt components


• R(τ/µ) affects only the τ-muon components


• Many uncertainties are correlated between prompt muons and leptonic tau decays


• They mostly cancel for the probe muons used to measure R(τ/µ)=B(W→τν)/B(W→µν)
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Results
Post-fit data/MC agreement
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Results
Impact of Uncertainties
• Total uncertainty dominated by 

systematics with non-negligible 
statistical component


• Uncertainty on B(τ→µνν) is 
~negligible


• Dominant uncertainties come 
from


• Modelling of |d0µ| 
distributions from data


• tt̄  Modelling of signal


• tt̄ modelling of µ(had)


• Muon reconstruction 
efficiencies
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Shows very good agreement with Standard Model 
Most precise measurement of this ratio to date 

Almost twice the precision of the combination of LEP results 
Submitted to Nature Physics (arXiv:2007.14040) 

R(τ/µ)=0.992 ± 0.013 
[ ± 0.007 (stat) ± 0.011 (syst) ]

Measured Value
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Consistency checks
• Consistency checks 

performed in separate 
subsets of the data:


• Each of 2015-16, 2017, 
2018


• eµ and µµ channels


• Individual pT bins


• Separately for probe muon 
charge


• This gives confidence that the 
result is robust
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Summary
• A new technique making 

use of ATLAS’s huge 
Run-2 dataset and 
excellent muon 
reconstruction shines 
new light on an old LEP 
discrepancy 

• Another example of 
the impressive high 
precision 
measurements 
possible in the LHC 

• A(nother) beautiful 
confirmation of the 
Standard Model!
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Backup
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Sources of uncertainties
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