τ-μ Lepton Flavour Universality in Y(3S) Decays at the BABAR Experiment

J. Michael RoneyUniversity of Victoria23 September 2020

On behalf of the BABAR Collaboration

Motivation

Partial width of vector such as $\Upsilon \rightarrow \ell^+ \ell^-$ is:

$$\Gamma_{\Upsilon_{\to}\ell\ell} = 4\alpha^2 e_q^2 \frac{|\Psi(0)|^2}{M^2} (1 + 2m_\ell^2/M^2) \sqrt{1 - 4m_\ell^2/M^2}$$
$$\implies R_{\tau\mu} = \frac{\Gamma_{\Upsilon_{\to}\tau\tau}}{\Gamma_{\Upsilon_{\to}\mu\mu}} = \frac{(1 + 2m_{\tau}^2/M_{\Upsilon}^2) \sqrt{1 - 4m_{\tau}^2/M_{\Upsilon}^2}}{(1 + 2m_{\mu}^2/M_{\Upsilon}^2) \sqrt{1 - 4m_{\mu}^2/M_{\Upsilon}^2}}$$

 e^+

Standard Model $R_{\tau\mu}(3S)_{SM} = 0.9948 \pm \mathcal{O}(10^{-5})$ γ^* With radiative corrections [Aloni, Efrati, Grossman& Nir, J. High Energ. Phys. 06, 019 (2017)] Ratio has no hadronic uncertainties ee⁻ \Rightarrow ideal probe for Physics Beyond the Standard Model

l+

Motivation

In [Phys. Lett. B653, 67, 2007] a light CP-odd Higgs boson A⁰ is proposed. In 2HDM(II) with large tan β the A⁰ boson exclusively decays into τ -pairs and thus New Physics effects might modify R $_{\tau\mu}$ in Y(nS) decays.

Aloni et al in [J. High Energ. Phys. 06, 019 (2017)] propose a New Physics contribution to $b \rightarrow c\tau v$ which explains the tension in R(D(*)) and which must also modify the R $_{\tau\mu}$ observable – encourage this measurement to be made

The only other measurement is by the CLEO collaboration [Phys.Rev.Lett. 98 (2007) 052002]: $R_{\tau\mu} = 1.05 \pm 0.08 \pm 0.05$.

BABAR Datasets

Off reson./scan:

Total:

 54 fb^{-1}

529 fb⁻¹

BABAR and PEP-II operated in 1999 - 2008 at SLAC.

are used to tune selections.

$e^+e^- \rightarrow \tau^+\tau^-$ Signal Selection

Y(35

V.

Y(35

$\tau_1 \rightarrow e \nu \nu, \tau_2 \rightarrow \mu \nu \nu \mid \mid h n \pi^0 \nu n=0,1,2,..$

- Two and only two opposite charged charged particles, each with polar angle acceptance designed to be insensitive to CM energy: $41^{\circ} < \theta^{CM} < 148^{\circ}$
- Tracks roughly backed-to-back in CM: angle > 110°
- PID one track as electron AND the other must fail the same electron PID requirements: e and not-e

Require Presence of neutrinos from τ decays

- Track azimuthal acollinearity > 3°
- Total calorimeter energy < 0.70 x $[E_{beam}(e)+E_{beam}(e+)]$
- |M²_{MISS}|> 0.01 x E²_{cm}
- $|\cos\theta^{CM}_{MISS}| < 0.85$

Suppress Bhabha backgrounds

- Both azimuthal and polar angle acollinearity of not-e and [e+ γ] >2°

Suppress of Two-photon backgrounds

Cuts on transverse momenta of the two tracks

hadrons

$e^+e^- \rightarrow \tau^+\tau^- \ Signal \ Selection$

$\tau_1 \rightarrow e \nu \nu, \tau_2 \rightarrow \mu \nu \nu \mid \mid h n \pi^0 \nu n=0,1,2,..$

- Two and only two opposite charged charged particles, each with polar angle acceptance designed to be insensitive to CM energy: $41^{\circ} < \theta^{CM} < 148^{\circ}$
- Tracks roughly backed-to-back in CM: angle > 110°
- PID one track as electron AND the other must fail the same electron PID requirements: e and not-e

Require Presence of neutrinos from τ decays

- Track azimuthal acollinearity > 3°
- Total calorimeter energy < 0.70 x $[E_{beam}(e)+E_{beam}(e+)]$
- |M²_{MISS}|> 0.01 x E²_{cm}
- $|\cos\theta^{CM}_{MISS}| < 0.85$

Suppress Bhabha backgrounds

 Both azimuthal and polar angle acollinearity of not-e and [e+γ] >2°

Suppress of Two-photon backgrounds

Cuts on transverse momenta of the two tracks

e+

PID -> not e

e

$e^+e^- \rightarrow \tau^+\tau^-$ Signal Selection

$\tau_1 \rightarrow e \nu \nu, \tau_2 \rightarrow \mu \nu \nu \mid \mid h n \pi^0 \nu n=0,1,2,..$

- Two and only two opposite charged charged particles, each with polar angle acceptance designed to be insensitive to CM energy: $41^{\circ} < \theta^{CM} < 148^{\circ}$
- Tracks roughly backed-to-back in CM: angle > 110°
- PID one track as electron AND the other must fail the same electron PID requirements: e and not-e

Require Presence of neutrinos from τ decays

- Track azimuthal acollinearity > 3°
- Total calorimeter energy < 0.70 x [E_{beam}(e-)+E_{beam}(e+)]
- |M²_{MISS}|> 0.01 x E²_{cm}
- $|\cos\theta^{CM}_{MISS}| < 0.85$

Suppress Bhabha backgrounds

 Both azimuthal and polar angle acollinearity of not-e and [e+γ] >2°

Suppress of Two-photon backgrounds

Cuts on transverse momenta of the two tracks

BEAUTY 2020

$e^+e^- \rightarrow \mu^+\mu^-$ Signal Selection

Two High Momentum Back-to-Back Charged Particles

- Two and only two opposite charged charged particles each within polar angle acceptance designed to be insensitive to CM energy: 0.65 rad < θ^{CM}(-) < 2.5 rad && 0.58 rad < θ^{CM}(+) < 2.56 rad
- CM opening angle between charged particles > 160°
- CM polar angle back-to-back in Filter: 2.8 rad < $\theta^{CM}(-) + \theta^{CM}(+) < 3.5$ rad
- P^{CM} high > 4 GeV || P^{CM} low > 2 GeV

Invariant mass of two charged particles near CM energy

• $0.8 < M_{\mu\mu}/E_{cm} < 1.1$

Tracks are muon-like: suppress Bhabha backgrounds

- Total EM calorimeter energy associated with both tracks < 2GeV
- At least one particle has response in the Instrumented Flux Return (IFR)

Fitting for $R_{\tau\mu}$

- $R_{\tau\mu}$ obtained with binned maximum-likelihood template fit to $M_{\mu\mu}/Vs$ and $E_{\tau\tau}$ /Vs distributions [Barlow&Beeston, Comp.Phys Comm. 77, 2019 (1993)]
- M_{µµ}: μ⁺μ⁻ invariant mass in μ⁺μ⁻ sample
- $E_{\tau\tau}$: total reconstructed energy in $\tau^+\tau^-$ sample using the measured momenta of charged particles and up to 10 most energetic photons
- $N_{\mu\mu}$ (no. $\Upsilon(3S) \rightarrow \mu^+\mu^-$ events) and $\tilde{R}_{\tau\mu} = N_{\tau\tau} / N_{\mu\mu}$ are free parameters in the fit ($N_{\tau\tau} = no. \Upsilon(3S) \rightarrow \tau^+\tau^-$ events)

Fitting for $R_{\tau\mu}$

- Signal templates from KKMC-based MC without ISR
- Non-Υ(3S) data gives templates of continuum background
- There is insufficient Υ(3S) off-resonance data->we use high-statistics Υ(4S) sample having identical detector configuration (Run 6) as the Υ(3S) sample (Run 7) - 10x larger than Υ(3S) off-resonance sample
- Run 6 gives 44M selected $\mu^+\mu^-$ events and 5M selected $\tau^+\tau^-$ events

Separating $\Upsilon(3S) \rightarrow \mu^+ \mu^-$ from continuum

Exploit difference in invariant mass shapes arising from initial state radiation effects to distinguish resonant decays from continuum in fit

e.g. 7% of the selected $\Upsilon(3S) \rightarrow \mu^+\mu^-$ events have invariant mass <0.98 E_{CM} cf 23% of the selected continuum $e^+e^- \rightarrow \mu^+\mu^-$ events have invariant mass <0.98 E_{CM}

$\Upsilon(3S) \rightarrow \mu^+ \mu^-$ in presence of 'cascade decays'

- Cascade decays' here refer to Υ(3S) → ℓ⁺ℓ⁻ decays through intermediate states, including the Υ(2S) and Υ(1S)
- Separate the cascade decays from signal in $\Upsilon(3S) \rightarrow \mu^+\mu^-$ in fit to $M_{\mu\mu}/Vs$ and use those fits to fix them for $\Upsilon(3S) \rightarrow \tau^+\tau^-$
- Cascade templates and small contributions from Y(3S)→ hadrons are from EvtGen-based MC

Correct for ISR-produced Y(nS) in Y(4S) Data <u>Templates intended to describe Continuum only</u>

The Run 6 continuum template is corrected to take into account $\Upsilon(nS)$ produced by the radiative return process. Total ISR cross section for a narrow resonance is

$$\sigma(s) = \frac{12\pi^2 \Gamma_{ee} \Gamma_{\mu\mu}}{sM\Gamma} W(s, x_0), \ x_0 = 1 - \frac{M^2}{s}, \ W_0(s, x) = \frac{\alpha}{\pi x} \left(\ln \frac{s}{m_e^2} - 1 \right) (2 - 2x + x^2),$$

where W_0 is one photon radiator function, since all $\Upsilon(nS)$ resonances are close to each other – photon emission is soft and corrections have to be evaluated.

Accounting for BB Background

Continuum template uses RUN 6 data at $\Upsilon(4S)$ and low multiplicity B meson decays can contaminate the sample: in MC that is 3x data sample 15 $\mu^+\mu^-$ events and 7644 $\tau^+\tau^-$ events are selected

Data-driven corrections to MC efficiencies

Sample	$arepsilon_{\mu\mu}$	$\varepsilon_{ au au}$	$\varepsilon_{ au au}/arepsilon_{\mu\mu}$
MC ↑(3 <i>S</i>)	69.951 ± 0.018	7.723 ± 0.010	0.11041 ± 0.00015
MC $\Upsilon(3S)$ off peak	49.250 ± 0.017	7.018 ± 0.010	0.14249 ± 0.00021
MC $\Upsilon(4S)$ off peak	48.997 ± 0.016	6.979 ± 0.007	0.14245 ± 0.00015

DATA/MC efficiency correction $\tilde{R}_{\tau\mu} = N_{\tau\tau}/N_{\mu\mu}$

Sample	$N_{\mu\mu}^{data}$	$N_{\mu\mu}^{MC}$	$N_{ au au}^{data}$	$N_{ au au}^{MC}$	$ ilde{R}^{data}_{ au\mu}/ ilde{R}^{MC}_{ au\mu}$
$\Upsilon(3S)$ off peak	1,538,569	1,554,208	179,466	178,569	1.0152 ± 0.0030
$\Upsilon(4S)$ off peak	4,422,407	4,398,983	515,067	505,133	1.0143 ± 0.0020
Efficiency correction C_{MC}					1.0146 ± 0.0016
					• • • • • • • • • • • • • • • • • • •

Off-peak DATA

$$\begin{split} \tilde{R}_{\tau\mu}(3S) &= 0.11665 \pm 0.00029 (0.25\%) \\ \tilde{R}_{\tau\mu}(4S) &= 0.11647 \pm 0.00017 (0.15\%) \\ \tilde{R}_{\tau\mu}(4S) / \tilde{R}_{\tau\mu}(3S) - 1 &= -0.0015 \pm 0.0029 \end{split}$$

Off-peak MC

$$\begin{split} \tilde{R}_{\tau\mu}(3S) &= 0.11489 \pm 0.00018(0.16\%) \\ \tilde{R}_{\tau\mu}(4S) &= 0.11483 \pm 0.00014(0.13\%) \\ \tilde{R}_{\tau\mu}(4S) / \tilde{R}_{\tau\mu}(3S) - 1 &= -0.0006 \pm 0.0020 \end{split}$$

Ratio of No. of $\tau\tau$ to $\mu\mu$ candidates is independent of CM Energy in both Data and MC

Final Fit

Final Fit with continuum subtracted

'Cascade' backgrounds clearly seen
Radiative tail is very well described

Final Fit with continuum subtracted

continuum-subtracted distribution ... Y (1S) particularly clear

J.M.Roney, Univ. of Victoria tau-mu LFU in Y(3S) Decays at BaBar BEAUTY 2020

Systematic Uncertainties

Source	Uncertainty (%)		
Particle identification	0.9		
Cascade decays	0.6		
Two-photon production	0.5		
$\Upsilon(3S) \rightarrow hadrons$	0.4		
MC shape	0.4		
$B\bar{B}$ contribution	0.2		
ISR subtraction	0.2		
Total	1.4		

- Various particle identification criteria were applied to estimate the PID uncertainty e.g. explicit muon ID. All used data-driven corrections. Error captures spread
- In cascade decays the ratios for lower Υ resonances were varied within experimental uncertainties around the SM value.
- Two-photon: Various P_{\perp} selections are applied giving up to twice the loss in efficiency.

Systematic Uncertainties

Source	Uncertainty (%)		
Particle identification	0.9		
Cascade decays	0.6		
Two-photon production	0.5		
$\Upsilon(3S) \rightarrow hadrons$	0.4		
MC shape	0.4		
$B\bar{B}$ contribution	0.2		
ISR subtraction	0.2		
Total	1.4		

- BB and generic Υ(3S) backgrounds conservatively varied by ±50% about nominal MC values
- Possible effects of MC shapes on the ratio: radiative effects are modelled by PHOTOS and KKMC generators separately and the invariant mass resolution is varied up to 10%
- ISR subtraction has uncertainties in Y(nS) total width and leptonic BR and varying overall amount by ±10% to conservatively account for radiator function uncertainties.

Summary

- $e^+e^- \rightarrow \mu^+\mu^-$ sample cleanly selected, with ~0.1% backgrounds
- $e^+e^- \rightarrow \tau^+\tau^-$ sample selected with ~1% backgrounds
- A binned likelihood template fit developed to avoid problems with luminosity determination and to account for cascade decays in the ratio
- Correction to continuum template due to background events produced via Radiative Return Process is implemented
- Contribution of $B\overline{B}$ events is evaluated
- Systematic uncertainties are estimated and found to be dominated by particle ID effects

Conclusion

Using a 26.9 fb⁻¹ data sample collected at the Υ (3S) and 78.3 fb⁻¹ data sample at the Υ (4S) to describe the continuum, *BABAR* measures:

$$R_{\tau\mu} = \frac{\mathcal{B}(\Upsilon(3S) \rightarrow \tau^{+}\tau^{-})}{\mathcal{B}(\Upsilon(3S) \rightarrow \mu^{+}\mu^{-})} = 0.9662 \pm 0.0084_{stat} \pm 0.014_{syst}$$
$$= 0.9662 \pm 0.016 \text{tot}$$

This measurement is 6 x more precise than CLEO's result and is within 2σ of the SM value of 0.9948

paper on this work (arXiv:2005.01230) has been submitted to PRL

Additional Supporting Material

Fitting Templates (Μμμ/Ecm and Εττ/Ecm displayed in same 1D histo)

$e^+e^- \rightarrow \mu^+\mu^-$ Cross section

 MCGPJ, a high precision (< 0.2%) MC generator with radiative corrections where Υ(nS) embedded via vacuum polarization, shows that the resonance production is more than 30 times larger than continuum one at Υ(3S) energy.

- Due to strong interference between resonance and continuum dilepton production there is an ambiguity in how to extract the leptonic branching fractions.
- In the ratio $R_{\tau\mu}$ the ambiguity is significantly mitigated as well as other factors e.g. instability of the collider interaction energy.
- At the peak $\sigma(ee \rightarrow \Upsilon(3S) \rightarrow \mu\mu)/\sigma(ee \rightarrow \gamma^* \rightarrow \mu\mu) = 1.136$ with beam spread.
- Similar continuum cross section of $e^+e^- \rightarrow e^+e^-$ is more than 500 times larger than the resonance one \Rightarrow only dimuon decays of $\Upsilon(3S)$ are considered.

τ⁺τ⁻ Selection: Bhabha background suppression

To further suppress radiative Bhabha events when a hard photon is emitted at large angle the direction of the electron is corrected using the most energetic photon found in the calorimeter $\vec{P}_{e\gamma} = \vec{P}_e + \vec{P}_{\gamma}$ to restore collinearity and then reject collinear events: $|\Delta \phi| < 2^\circ$ and $|\Delta \theta| < 2^\circ$ with $\Delta \phi = |\phi(\vec{P}_{e\gamma}) - \phi(\vec{P}_{e\gamma})| - 180^\circ$ and $\Delta \theta = \theta(\vec{P}_{e\gamma}) + \theta(\vec{P}_{e\gamma}) - 180^\circ$

τ⁺τ⁻ Selection: 2-photon background suppression

Since momenta of particles of two-photon production are correlated, a two-dimensional selection is applied to maintain good efficiency for signal and reject two-photon background.

Known MC backgrounds are subtracted.

e.

e⁻