Angular Distributions in Rare *b* Decays

(from a theoretical perspective – including baryons)

Thorsten Feldmann

thorsten.feldmann@uni-siegen.de

Beauty 2020 online, 21.-24. September 2020

Th. Feldmann

Angular Distributions

Disclaimer:

- A comprehensive review on angular observables and *B*-decay anomalies has been presented by Sébastien Descotes-Genon at BEAUTY 2019: [PoS (Beauty2019) 015]
 - benefits of optimized angluar observables for NP fits
 - global fits for SM vs. NP (including LFU-violating observables)
 - · Wilson coefficients, form factors and all that
 - ...
- This talk will thus focus on:
 - theoretical subtleties (mostly concerning hadronic uncertainties)
 - recent developments (in particular for baryonic modes)
 - what to expect from theory in the future (sometimes speculative)

Preliminaries

What we are after ...

Experimental constraints on Wilson coefficients $C_{9,10,9',10',...}$ describing $b \rightarrow s\ell^+\ell^-$ — in the Standard Model or with "New Physics"

- "optimized" angular observables give detailed information on decay dynamics, where experimental and theoretical systematics cancel to some extent
- careful statistical analysis:
 - \rightarrow take into account parametric and systematic hadronic uncertainties
 - \rightarrow discrimate between SM vs. NP interpretation in global fits

 \rightarrow plenary talk by Javier Virto from monday

Th. Feldmann

Theoretical Toolbox

- Weak effective Hamiltonian:
 - short-distance dynamics from flavour transitions in the SM or in NP models or in SM-EFT encoded in Wilson coefficients C_i(μ)
 - scale-dependence controlled by RG running

precise predictions for:

 $C_i(\mu_b)$

(where $\mu_b \sim \mathcal{O}(m_b)$)

- Factorization Approximation ("naive factorization")
 - hadronic matrix elements reduced to transition form factors
 - (light-cone) sum-rules constrain FFs at large recoil energy
 - lattice QCD simulations constrain FFs at low recoil energy
 - µ_b-dependence of Wilson coefficients not matched
- Effective Wilson coefficients incorporate LO quark-loop effects

$$C_7
ightarrow C_7^{
m eff}, \quad C_9
ightarrow C_9^{
m eff}(q^2)$$

- Match LO scale dependence
- not applicable near hadronic sub-structures (resonances,...)

Theoretical Toolbox

Beyond naive factorization:

"factorizable" and "non-factorizable" corrections from radiative QCD effects or power-suppressed terms of relative order Λ_{QCD}/m_b

- low hadronic recoil ($q^2 \gtrsim 16 \text{ GeV}^2$):
 - expansion in $1/m_b \oplus$ expansion in $\alpha_s \to$ Heavy-quark effective theory
- large hadronic recoil ($q^2 \lesssim 6 \text{ GeV}^2$):
 - expansion in $1/m_b \sim 1/2E_K \oplus$ expansion in α_s
 - \rightarrow "QCD (improved) factorization" / Soft-collinear effective theory

Non-perturbative analyses using analyticity / unitarity / dispersion relations

- correlation functions as complex functions of complex arguments
- find parametrizations consistent with analytic properties in QFT
- use experimental and theoretical information to constrain parameters

Decays of *B* Mesons

benefit of optimized angular observables for NP searches

[1202.4266, 1212.2321, 1303.5794, ...]

- angular observables combined with LFU violation in b → sℓ⁺ℓ⁻: deviations from SM in C₉ as large as 25%
- advanced theoretical and phenomenological studies for "golden decay channels", $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$

[see e.g. Belle II Physics Book and refs. therein]

- phenomenological studies for many further decay modes, recent studies:
 - time-dependent angular analysis in $B_d \to K_S \ell \ell$ [2008.08000]
 - angular analysis of $B_s \rightarrow f_2' (\rightarrow K^+ K^-) \mu^+ \mu^-$ [2009.06213]

(for experimental aspects, see talk by Adlène Hicheur from monday)

(Theory 1)

 $B
ightarrow \overline{K^* \mu^+ \mu^-}$

Bobeth et al. [arXiv:1707.07305]

(see also talk by Javier Virto from monday)

- short-distance effects in C_{7,9,10}
- factorizable hadronic effects in (generalized) form-factor functions $\mathcal{F}_{\lambda}^{(T)}(q^2)$
- non-factorizable hadronic effects in helicity- and q²-dependent functions

 $\mathcal{H}_{\lambda}(q^2) \equiv$ (LO quark loops + perturbative and non-perturbative corrections)

• QCDF/SCET theoretical calculations constrain \mathcal{H}_{λ} for $q^2 \ll 4m_c^2$ (preferably $q^2 < 0$) • $B \to J/\psi K^*$ and $B \to \psi(2S)K^*$ measurements constrain \mathcal{H}_{λ} around $q^2 \simeq M_{J/\psi,\psi'}^2$

 $B \rightarrow K^* \mu^+ \mu^-$

(Theory 1)

Bobeth et al. [arXiv:1707.07305]

(see also talk by Javier Virto from monday)

conformal mapping:

$$q^2\mapsto z(q^2)\equiv rac{\sqrt{t_+-q^2}-\sqrt{t_+-t_0}}{\sqrt{t_+-q^2}+\sqrt{t_+-t_0}}$$

• with open-charm threshold
$$t_+ = 4M_D^2$$

• optimized value for $t_0 = t_+ - \sqrt{t_+ (t_+ - M_{\psi(2S)}^2)}$

(to make |z| small)

Z-expansion:(here: only charmful operators $O_{1,2}^{(c)}$ taken into account) $\mathcal{H}_{\lambda}(z) = \underbrace{\frac{1-z \, Z_{J/\psi}^{*}}{1-z_{J/\psi}}}_{J/\psi\text{-pole}} \underbrace{\frac{1-z \, Z_{\psi}^{*}(2S)}{z-Z_{\psi}(2S)}}_{\psi'\text{-pole}} \mathcal{F}_{\lambda}(z) \sum_{k=0}^{K} \underbrace{\alpha_{k}^{(\lambda)}}_{\text{fit parameters}} z^{k}$

Th. Feldmann

Angular Distributions

(Phenomenology 1)

Bobeth et al. [arXiv:1707.07305]

(see also talk by Javier Virto from monday)

 q^2 [GeV²]

10 9

SM prediction (prior)

SM fit (posterior LLH2) NP fit (posterior LLH2) $B \rightarrow K^* \psi_n$

SM prediction (prior):

 $B \rightarrow K^* \mu^+ \mu^-$

- residues at $q^2 = M_{J/\psi,\psi(2S)}^2$ from exp.
- theory input at $q^2 = \{-7, -5, -3, -1\}$ GeV² as pseudo-data

SM or NP fit (posterior)

 include angular observables in $B \rightarrow K^* \mu^+ \mu^-$

Th. Feldmann

Angular Distributions

(Phenomenology 2)

Hurth/Mahmoudi/Neshatpour [arXiv:2006.04213]

for earlier work, see also [Ciuchini et al. 2015] [Arbey et al. 2018] [Chrzaszsz et al. 2019] ...

"How to disentangle NP Effects from non-factorizable hadronic effects?"

 Any NP fit for Wilson coefficients C^(')_{7,9} from angular observables alone is embedded in a more general hadronic fit with open parameters in N_λ(q²)

Example: Fit with real δC_9 vs. hadronic fit with 9 complex coefficients (simplified approach: expansion of N_λ around QCDF to second order in q^2)

 by construction: hadronic fit yields better description of angular observable S₅

$B \rightarrow$	$K^* ar{\mu} \mu / \gamma$ observables	$(\chi^2_{\rm SM}=$ 85.1)		
	best-fit value	$\chi^2_{\rm min}$	Pull _{SM}	
δ C 9	-1.11 ± 0.15	49.7	6.0 <i>σ</i>	
h_{λ}	(see below)	26.0	4 .7 <i>σ</i>	

 $B \rightarrow K^* \mu^+ \mu^-$

 $B \rightarrow K^* \mu^+ \mu^-$

Hurth/Mahmoudi/Neshatpour [arXiv:2006.04213]

Details of hadronic fit:

${\cal B} o {\cal K}^* \ ar{\mu} \mu / \gamma$ observables							
$(\chi^2_{\rm SM}=85.1,~\chi^2_{\rm min}=25.96;~{\rm Pull}_{\rm SM}=4.7\sigma)$							
	Real	Imaginary					
$h_{+}^{(0)}$	$(-2.37 \pm 13.50) imes 10^{-5}$	$(7.86 \pm 13.79) imes 10^{-5}$					
$h_{+}^{(1)}$	$(1.09 \pm 1.81) imes 10^{-4}$	$(1.58 \pm 1.69) imes 10^{-4}$					
$h_{+}^{(2)}$	$(-1.10\pm2.66) imes10^{-5}$	$(-2.45\pm 2.51)\times 10^{-5}$					
$h_{-}^{(0)}$	$(1.43 \pm 12.85) imes 10^{-5}$	$(-2.34\pm3.09)\times10^{-4}$					
$h_{-}^{(1)}$	$(-3.99\pm 8.11) imes 10^{-5}$	$(1.44 \pm 2.82) imes 10^{-4}$					
h	$(2.04 \pm 1.16) imes 10^{-5}$	$(-3.25\pm3.98) imes10^{-5}$					
$h_0^{(0)}$	$(2.38 \pm 2.43) imes 10^{-4}$	$(5.10\pm3.18) imes10^{-4}$					
$h_{0}^{(1)}$	$(1.40 \pm 1.98) imes 10^{-4}$	$(-1.66 \pm 2.41) \times 10^{-4}$					
$h_0^{(2)}$	$(-1.57 \pm 2.43) imes 10^{-5}$	$(3.04 \pm 29.87) \times 10^{-6}$					

• each individual hadronic parameter still consistent with zero

(!)

Hurth/Mahmoudi/Neshatpour [arXiv:2006.04213]

Applying Wilks' Theorem:

$B \to K^* \bar{\mu} \mu / \gamma$ observables; low- q^2 bins up to 8 ${\rm GeV^2}$									
nr. of free parameters	$\begin{pmatrix} 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{pmatrix} 2 \\ \text{Real} \\ \delta C_7, \delta C_9 \end{pmatrix}$	$\begin{pmatrix} 2\\ Comp.\\ \delta C_9 \end{pmatrix}$	$\begin{pmatrix} 4 \\ Comp. \\ \delta C_7, \delta C_9 \end{pmatrix}$	$ \begin{pmatrix} 3 \\ \text{Real} \\ \Delta C_9^{\lambda, \text{PC}} \end{pmatrix} $	$\begin{pmatrix} 6 \\ Comp. \\ \Delta C_9^{\lambda, \text{PC}} \end{pmatrix}$	$\begin{pmatrix} 9\\ \text{Real}\\ h^{(0,1,2)}_{+,-,0} \end{pmatrix}$	$ \begin{pmatrix} 18 \\ Comp. \\ h_{+,-,0}^{(0,1,2)} \end{pmatrix} $	
$0 \ (\text{plain SM})$	6.0σ	5.6σ	5.8σ	5.4σ	5.4σ	5.5σ	5.0σ	4.7σ	
1 (Real δC_9)	_	0.5σ	(1.5σ)	1.2σ	0.6σ	1.8σ	1.1σ	(1.5σ)	
2 (Real $\delta C_7, \delta C_9$)	_	_	—	1.4σ	_	—	1.3σ	1.6σ	
2 (Comp. δC_9)		_		0.8σ		1.7σ	—	1.4σ	
4 (Comp. $\delta C_7, \delta C_9$)	—	—		_		—	—	1.5σ	
3 (Real $\Delta C_9^{\lambda, \text{PC}}$)	_	_		_		(2.2σ)	1.4σ	1.7σ	
6 (Comp. $\Delta C_9^{\lambda,\mathrm{PC}})$		_		_	_	—	—	0.1σ	
9 (Real $h_{+,-,0}^{(0,1,2)}$)	_	_	_	_	_	_	_	(1.5σ)	

• any preference among the various fit scenarios is $\lesssim 2\sigma$

 \rightarrow situation concerning "NP or hadronic effects?" still inconclusive

(?)

Decays of Λ_b Baryons

large # of angular observables

- ightarrow sensitive to all Dirac structures in ${\it H}_{
 m eff}$
- ightarrow expect similar deviations from SM as in $B
 ightarrow {\cal K}^{(*)}\ell^+\ell^-$
- Λ_b could be produced polarised (can be tested in angular distributions)
- Λ_b spectator system is a diquark
 - \rightarrow different hadronic uncertainties compared to *B*-meson decays
 - $\to \Lambda_b \to \Lambda$ form factors available from lattice QCD
 - \rightarrow current understanding of spectator-dependent effects poor

 $\left(\sqrt{} \right)$

(!)

Th. Feldmann

Angular Distributions

[Detmold/Meinel 2016]

[SCET]

Böer/TF/van Dyk [arXiv:1410.2115] see also: Gutsche et al. [arXiv:1301.3737]

- Λ_b → Λ described by 10 independent form factors conveniently defined in helicity basis [e.g. TF/Yip 2012]
 reduction 10 → 2 at low recoil energy (m_Λ ~ E_Λ ≪ m_b) [HQET]
- reduction 10 \rightarrow 1 at large recoil energy ($m_{\Lambda} \ll E_{\Lambda} \sim m_b$)
- FFs accessible with lattice QCD
 - \rightarrow simulation in low-recoil region
 - \rightarrow extrapolation to large recoil by "z-expansion"

(Theory 1)

(Theory 1)

Böer/TF/van Dyk [arXiv:1410.2115]

- unpolarized Λ_b decay in terms of 10 angular observables
- depend on Wilson coefficients, form factors, and parity-violating decay parameter α in weak $\Lambda \rightarrow N\pi$ decay
 - \rightarrow additional forward-backward asymmetries (as compared to $B \rightarrow K^*$ mode)
 - \rightarrow sensitive to independent combinations of Wilson coefficients
- construct optimized angular observables that (in factorization approx.)
 - only depend on combinations of Wilson coefficients
 - only depend on ratios of form factors
 - only depend on Wilson coefficients and one form-factor ratio

 $\Lambda_b \to \Lambda$ provides complementary information on $b \to s \ell^+ \ell^-$

(for related studies see also:

 $\Lambda_b \to \Lambda(\to p\pi)\ell^+\ell^-$

... [1111,1849], [1301.3737], [1410.2115], [1710.01335], [1802.09404], [1804.08527] ...)

$\Lambda_b \to \Lambda(\to p\pi)\ell^+\ell^-$

(Theory 2)

Blake/Kreps [arXiv:1710.00746]

• angular distributions for polarized Λ_b described by five angles \rightarrow 24 *additional* angular observables

Th. Feldmann

Angular Distributions

(Phenomenology 1)

Blake/Meinel/van Dyk [arXiv:1912.05811]

(for earlier works, see also [Meinel/van Dyk 2016, Das 2018])

Updated Bayesian analysis:

 $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\mu^+\mu^-$

- New Results (!) for parity-violating parameter α in $\Lambda \rightarrow p\pi^-$
- complete set of angular observables from LHCb
- constraints from time-integrated $\mathcal{B}(B_s \rightarrow \mu_+\mu_-)$
- updated value for the Λ_b fragmentation function
 - \rightarrow updated value for $\mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda)$,

(used as a normalization in LHCb measurement of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$)

Results:

- Λ_b polarization compatible with zero, $|P_{\Lambda_b}| \le 11\%$ (@95%)
- angular distributions compatible with SM
- similarly good fit with NP in C_9 only: $C_9 = 4.8 \pm 0.8$
- slightly better fit for NP in $C_{9,10}$: $C_9 = 4.4 \pm 0.8$ $C_{10} = -3.8 \pm 0.3$ (compatible with global fit for *B*-meson decays and with SM)

[JHEP 09 (2018) 146]

[ATLAS,CMS,LHCb]

 $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\mu^+\mu^-$

(Phenomenology 1)

Blake/Meinel/van Dyk [arXiv:1912.05811]

global best-fit-point refers to [1704.05340]

Model comparison:

- The two scenarios with [SM only] or [NP in C₉ only] are almost equally efficient in describing the data.
- Scenario with [NP in C_{9,10}] "strongly disfavored"
- Scenario with [NP in C_{9,10,9',10'}] "decisively disfavored"

Yan [arXiv:1911.11568]

- include full set of operators in H_{eff} (scalar, pseudo-scalar, vector, axial-vector, tensor)
- lepton mass kept finite ightarrow applicable for decays into au leptons
- Comparison with SM and scalar-leptoquark model (S_1+S_3)

updated LHCb data not yet included ...

Das [arXiv:1909.08676]

(for earlier work, see also [Sahoo/Mohanta 2016])

- Models that explain LFU violation in B decays often also lead to LFV
- study $b \to s \ell_1^+ \ell_2^-$ decays in $\Lambda_b \to \Lambda$ transitions
- non-factorizable long-distance QCD effects are absent
- LFV tiny in the SM \rightarrow clear sign of NP

Results

- all vector, axial-vector, scalar and pseudo-scalar operators included
- branching ratio and leptonic FB asymmetry in terms of angular coefficients

$$rac{d\mathcal{B}}{dq^2} = 2K_{1ss} + K_{1cc}\,, \qquad A^\ell_{FB} = rac{3}{2}\,rac{K_{1c}}{K_{1ss} + K_{1cc}}$$

• benchmark model with vector leptoquark $U_1 = (3, 1)_{3/2}$ parameter space constrained by other low-energy observables

$\Lambda_b \to \Lambda \ell_1^+ \ell_2^-$

(Phenomenology 3)

Das [arXiv:1909.08676]

 q² distribution of differential branching ratio and lepton-side forward-backward asymmetry, shown for one set of benchmark values of the U₁ model parameters allowed by low-energy observables.

The blue and orange lines correspond to $\Lambda_b \rightarrow \Lambda \tau^+ \mu^-$ and $\Lambda_b \rightarrow \Lambda \mu^+ \tau^-$.

• predictions from allowed parameter space:

$$\begin{split} \langle \mathcal{B}(\Lambda_b \to \Lambda \tau^+ \mu^-) \rangle &\in [1.55 \times 10^{-9}, 7.83 \times 10^{-6}] \\ \langle \mathcal{B}(\Lambda_b \to \Lambda \mu^+ \tau^-) \rangle &\in [5.01 \times 10^{-9}, 1.78 \times 10^{-5}] \\ \langle A_{FB}^{\ell}(\Lambda_b \to \Lambda \tau^+ \mu^-) \rangle &\in [-0.2504, -0.003] \\ \langle A_{FB}^{\ell}(\Lambda_b \to \Lambda \mu^+ \tau^-) \rangle &= -0.4040 \end{split}$$

Large ranges due to poor experimental bounds on $B_s \rightarrow \tau^+ \tau^-, B^+ \rightarrow K \tau^+ \tau^-$.

 \Rightarrow LFV branching ratios are accessible in LHCb !

Decays of Λ_b Baryons to excited $\Lambda(1520)$

 Λ(1520) decays through strong interaction into pK or nK, appears to dominate Λ_b → pK⁻J/ψ around m_{pK} ~ 1.5 GeV

• $\Lambda(1520)$ has spin-parity $J^P = 3/2^-$

- complementary information on NP in $b \rightarrow s \ell^+ \ell^-$
- $\Lambda_b \rightarrow \Lambda^*$ form factors more involved on the lattice, preliminary studies [Meinel/Rendon 2016], very recent results [Meinel/Rendon, today]
- poor theoretical knowledge on Λ(1520) hadronic structure
- recoil energy not particularly large, and m_{Λ^*} not very small \rightarrow potentially large corrections to HQET/SCET relations

Х

(X)

Descotes-Genon/Novoa-Brunet [1903.00448] Das/Das [2003.08366]

Modifications compared to $\Lambda_b \rightarrow \Lambda(J/P = 1/2^+)$:

- theoretical subtleties with quantization of spin-3/2 fields, irrelevant in narrow-width approx. (tree-level propagation of on-shell state)
- $\Lambda(1520)$ state described by Rarita-Schwinger spinor $u_{\alpha}(k, s_{\Lambda})$
 - \rightarrow additional form-factor structures (10 \rightarrow 14)
 - \rightarrow conveniently described in helicity basis
 - \rightarrow additional form factors vanish in HQET/SCET limit (conjecture)
- differential decay rate for unpolarized Λ_b → Λ^{*} now described in terms of 12 angular coefficients (instead of 10 for Λ_b → Λ)

Theoretical improvements (so far):

• QCD corrections of $\mathcal{O}(\alpha_s)$ to HQET form-factor relations at low recoil

[Das/Das 2020]

 $\Lambda_b
ightarrow \Lambda(1520) (
ightarrow Nar{K}) \ell^+ \ell^-$

Descotes-Genon/Novoa-Brunet [1903.00448]

Preliminary numerical studies:

(using form factors from quark model, and approximate error estimates)

- angular coefficients show some sensitivity to right-handed NP in C'_9
- also estimates for leptonic forward-backward asymmetry (zero crossing)
- hadronic forward-backward asymmetries vanish (strong decay of Λ(1520)), can be exploited in experimental identification of Λ(1520) candidates (!)

$\Lambda_b ightarrow \Lambda(1520) (ightarrow Nar{K}) \ell^+ \ell^-$

Amhis et al. [2005.09602] Descotes-Genon/Novoa-Brunet [1903.00448]

LHCb sensitivity studies (for SM vs. NP scenario with $C_{9\mu}^{NP} = -1.11$):

grey-scale markers: Run-2, Run-3, Run-4, Upgrade-2

Summary / Outlook

Angular observables in exclusive $b \rightarrow s\ell^+\ell^-$ decays provide crucial information on short- and long-distance dynamics in *b*-hadron decays:

- very good interface between experimental measurements, phenomenological analyses, and theoretical interpretation
- hadronic uncertainties from non-factorizable contributions can be reduced by data-driven methods
- model-independent global fits in different SM or NP scenarios
- interplay with LFU-violating observables
- \rightarrow include more decay modes/observables as cross-check
- \rightarrow more sophisticated theory analyses, in particular for baryonic modes
- → at some stage also non-trivial QED corrections become important

[see e.g. recent preprint 2009.00929]

ご清聴 ありがとうございました。

Thanks for your (digital) attention!