Study of heavy-quark transport properties with **ALICE**

Grazia Luparello for the ALICE Collaboration **INFN** Trieste email: grazia.luparello@cern.ch

19th International Conference on B-Physics at Frontier Machines BEAUTY 2020 21-24 September 2020

Why heavy quarks as QGP probes?

Heavy-quark mass (charm and beauty) large compared to the scales characterising the QGP: $m_Q >> \Lambda_{QCD}$ and $m_Q >> T_{QGP}$

As consequence:

production restricted to initial hard-scattering processes production time of $c\bar{c}(b\bar{b})$ pair at rest: $\tau_{\rm prod} = \hbar/4m_{\rm c(b)} \simeq 0.1(0.02) \text{ fm/}C < \tau_{\rm QGP} \simeq 0.1-1 \text{ fm/}C$

- **+Brownian motion** in the QGP at low momenta
 - \Rightarrow access to the **spatial diffusion coefficient 2\pi TD_s**
- Flavour conserved in strong interactions
- transported through the full system evolution
- +Long relaxation time τ_Q comparable with the fireball lifetime (~ few fm/c)
 - reach partial thermalisation

Why heavy quarks as QGP probes?

Heavy-quark mass (charm and beauty) large compared to the scales characterising the QGP: $m_Q >> \Lambda_{QCD}$ and $m_Q >> T_{QGP}$

As consequence:

production restricted to initial hard-scattering processes production time of $c\bar{c}(b\bar{b})$ pair at rest: $\tau_{\rm prod} = \hbar/4m_{\rm c(b)} \simeq 0.1(0.02) \text{ fm/}C < \tau_{\rm QGP} \simeq 0.1-1 \text{ fm/}C$

- **Brownian motion** in the QGP at low momenta
 - \Rightarrow access to the **spatial diffusion coefficient 2\pi TD_s**
- Flavour conserved in strong interactions

transported through the full system evolution

- +Long relaxation time τ_Q comparable with the fireball lifetime (~ few fm/c)
 - reach partial thermalisation

QGP investigations with HQs:

In-medium energy-loss: colour-charge and quark-mass dependence +HQ participation in the collective expansion, **thermalisation** in the medium •Modification of the hadronisation mechanisms in the medium

 $R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}} = \frac{\clubsuit \leftrightarrow \clubsuit }{\bullet \to \leftarrow \bullet \times N_{\rm pp}}$

ALI-PREL-320119

Strong energy loss of charm quarks in the medium

Grazia Luparello - INFN Trieste

Hint of p_{T} -integrated D⁰ $R_{AA} < 1$ and $R_{pPb} = 1$: modification of the hadronisation in Pb-Pb collisions?

In-medium energy loss: light vs heavy quarks

+Quark-mass and colour-charge dependence studied comparing **D mesons** and **light hadrons**

$\frac{?}{\Delta E(ch. part) > \Delta E(D) > \Delta E(B) \rightarrow R_{AA}(ch. part) < R_{AA}(D) < R_{AA}(B)}$

In-medium energy loss: light vs heavy quarks

+Quark-mass and colour-charge dependence studied comparing **D** mesons and light hadrons

$\Delta E(\text{ch. part}) > \Delta E(\text{D}) > \Delta E(\text{B}) \rightarrow R_{AA}(\text{ch. part}) < R_{AA}(\text{D}) < R_{AA}(\text{B})$

$+R_{AA}(D) > R_{AA}(\pi)$ for $p_T < 10$ GeV/c

+Comparable R_{AA} for $p_T > 10$ GeV/c

Interpretation not straightforward:

possible mass and Casimir factor effects, shadowing, interplay between different p_T spectra of charm, light quarks and gluons, and different fragmentation fractions

ΔE (ch. part) > ΔE (D) > ΔE (B) → R_{AA} (ch. part) < R_{AA} (D) < R_{AA} (B)

 $+R_{AA}(C \rightarrow D) < R_{AA}(b \rightarrow D)$ at intermediate p_T +Hint of R_{AA} (c,b \rightarrow e) < R_{AA} (b \rightarrow e) at low p_T , compatible at high p_T where the beauty decay dominate

Parton-mass dependence of the energy loss **Dead cone effect**: gluon radiation suppressed for small angles ($\vartheta < m/E$)

Grazia Luparello - INFN Trieste

+Energy loss via **collisional** (dominant at low p_T) and **radiative** (dominant at high p_T) processes

Only collisional energy loss in: POWLANG, BAMPS el, TAMU \rightarrow determination of onset of radiative contributions by deviations from experimental data at a certain p_{\perp} Collisional and radiative contributions in: PHSD, MC@sHQ+EPOS2, BAMPS el+rad, Djordjevic, LIDO, Catania Quark recombination in: TAMU, POWLANG, PHSD, MC@sHQ, LIDO, Catania

NFN

uncertainties

Theoretical models including collisional and radiative energy loss can describe the data within

Azimuthal anisotropies of heavy-flavour particles

 Initial spatial anisotropy transferred into final anisotropy in momentum via collective interactions
 Expressed via the Fourier decomposition of the azimuthal distribution of particle momenta

Elliptic flow (v₂):

Iow p_T: sensitive to the participation of the HQ in the collective motion and thermalisation
 high p_T: sensitive to path-length dependence of energy loss

Triangular flow (v₃):

Originate from event-by-event fluctuations in the initial distributions of participant nucleons in the overlap region
 Sensitive to the ratio fo shear viscosity to the entropy density η/s

$$\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathrm{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(\mathrm{n}(\varphi - \Psi_{n})))$$
Flow coefficients
$$v_{\mathrm{n}} = \langle \cos(\mathrm{n}(\varphi - \Psi_{\mathrm{n}})) \rangle$$

$$n^{\mathrm{th}} \text{ symmetry plane}$$

ALI-PUB-352028

NFN

JHEP 09 (2018) 006 (pions) arXiv:2005.11131 (D mesons) arXiv:2005.14518 (J/ψ) arXiv:2005.11130 (b→e) PRL 123 (2019)192301 (Y(1S))

Grazia Luparello - INFN Trieste

- +Positive v_2 for prompt D mesons
- •Positive v_2 for J/ψ
- ♦Positive v_2 for b→e (significance 3.75σ)
- $+ \Upsilon(1S) v_2$ compatible with zero

ALI-PUB-352028

NFN

JHEP 09 (2018) 006 (pions) arXiv:2005.11131 (D mesons) arXiv:2005.14518 (J/ψ) arXiv:2005.11130 (b→e) PRL 123 (2019)192301 (Y(1S))

Grazia Luparello - INFN Trieste

- \bullet Positive v_2 for prompt D mesons
- •Positive v_2 for J/ψ
- ♦ Positive v_2 for b→e (significance 3.75σ)
- $+ \Upsilon(1S) v_2$ compatible with zero

Looking more in details at different p_T regions:

- For $p_T < 3$ GeV/ $c \Rightarrow$ mass ordering
- $V_2(\Upsilon(1S)) \leq V_2(b \rightarrow e) \sim V_2(J/\psi) < V_2(D) < V_2(\pi)$

ALI-PUB-352028

NFN

JHEP 09 (2018) 006 (pions) arXiv:2005.11131 (D mesons) arXiv:2005.14518 (J/ψ) arXiv:2005.11130 (b→e) PRL 123 (2019)192301 (Y(1S))

Grazia Luparello - INFN Trieste

 \bullet Positive v_2 for prompt D mesons •Positive v_2 for J/ψ ♦ Positive v_2 for b→e (significance 3.75σ) $+ \Upsilon(1S) v_2$ compatible with zero

Looking more in details at different p_T regions:

- For $p_T < 3$ GeV/ $c \Rightarrow$ mass ordering $V_2(\Upsilon(1S)) \leq V_2(b \rightarrow e) \sim V_2(J/\psi) < V_2(D) < V_2(\pi)$
- For $3 < p_T < 6$ GeV/c \Rightarrow charm quark coalescence with flowing light quarks $V_2(J/\psi) < V_2(D) \sim V_2(\pi)$

ALI-PUB-352028

NFN

JHEP 09 (2018) 006 (pions) arXiv:2005.11131 (D mesons) arXiv:2005.14518 (J/ψ) arXiv:2005.11130 (b→e) PRL 123 (2019)192301 (Y(1S))

Grazia Luparello - INFN Trieste

 \bullet Positive v_2 for prompt D mesons •Positive v_2 for J/ψ ♦ Positive v_2 for b→e (significance 3.75σ) $+ \Upsilon(1S) v_2$ compatible with zero

Looking more in details at different p_T regions:

- For $p_T < 3$ GeV/ $c \Rightarrow$ mass ordering $V_2(\Upsilon(1S)) \leq V_2(b \rightarrow e) \sim V_2(J/\psi) < V_2(D) < V_2(\pi)$
- For $3 < p_T < 6$ GeV/ $c \Rightarrow$ charm quark coalescence with flowing light quarks $V_2(J/\psi) < V_2(D) \sim V_2(\pi)$
- For $p_T > 6$ GeV/c: \Rightarrow consistent with similar path-length dependence of the energy loss for light and heavy quarks $V_2(J/\psi) \sim V_2(D) \sim V_2(\pi)$

Triangular flow of heavy-flavour particles

 Originate from event-by-event fluctuations in the initial distributions of participant nucleons in the overlap region

• For $p_T < 5$ GeV/c: $0 < v_3(J/\psi) \sim v_3(D) < v_3(\pi)$ →Charm quarks sensitive to initial state fluctuations

arXiv:2005.11131

All models includes:

- ✓ transport of charm quarks in an hydrodynamical expanding medium
- ✓ charm-quark energy loss (collisional and/or radiative)
- ✓hadronisation via quark coalescence and fragmentation

Constrain charm spatial diffusion coefficient:

$1.5 < 2\pi TD_s < 7$

for models that describe the data with $\chi^2/ndf < 2$

Charm thermalisation time: $\tau_{charm} = 3-14 \text{ fm/c}$

Conclusions

Strong suppression of heavy-flavour production in central Pb-Pb collisions

- **Mass ordering** of the R_{AA} observed at low/intermediate p_T
- $\rightarrow R_{AA}$ described by several models with different implementation of the charm/beauty-quarks **energy loss** (+ hadronisation via coalescence and fragmentation, hydrodynamic expansion of the medium)

✓ Heavy quarks participate in collective expansion of the system

- Positive D-meson and $J/\psi v_2$ and v_3
- Comparison with models constraints the charm spatial diffusion coefficient and the charm quark **thermalisation time** (~ QGP lifetime)
- \rightarrow Positive v_2 for electrons from beauty hadron decays: also beauty quarks partially thermalise?

Conclusions

Strong suppression of heavy-flavour production in central Pb-Pb collisions

- →Mass ordering of the R_{AA} observed at low/intermediate p_T
- $\rightarrow R_{AA}$ described by several models with different implementation of the charm/beauty-quarks **energy loss** (+ hadronisation via coalescence and fragmentation, hydrodynamic expansion of the medium)

✓Heavy quarks participate in collective expansion of the system

- Positive D-meson and $J/\psi v_2$ and v_3
- **thermalisation time** (~ QGP lifetime)
- \rightarrow Positive v_2 for electrons from beauty hadron decays: also beauty quarks partially thermalise?

Wide ALICE upgrade program for LHC Run 3 and 4:

- Investigate deeper the low p_{T} regime
- ➡Precise measurements of charm mesons and baryons
- Access to measurements of beauty-strange mesons and beauty-baryon production and flow

➡Comparison with models constraints the charm spatial diffusion coefficient and the charm quark

21

Back-up slides

Conditions similar to the Universe ~10 µs Kinetic freeze-out after the Big Bang

Collision overlap żone:

Full overlap -> "central" collisions Non-complete overlap -> "peripheral" collisions

Pre-thermal processes •

scattering of incoming quarks and gluons

- **Thermalisation** (t~1 fm/c = 3*10⁻²⁴ s) Equilibrium is established
- **QGP expansion and cooling** (t~10 fm/c) Described by an almost perfect fluid dynamics
- Hadronisation, Chemical freeze-out • Inelastic interactions cease, particle abundances frozen

Elastic interactions cease, particle dynamics (spectra) frozen

Grazia Luparello - INFN Trieste

HF-tagged jets

Centrality in AA collisions

- measured
- Higher centrality -> hotter QGP

- The impact parameter has to be estimated based on measured quantities: e.g. N_{ch} , E_T , ZDC...
- Glauber model: connects centrality to a number of binary collisions (N_{coll}) and participants (N_{part})

◆ Ions are large, R~7 fm, collisions occur with random impact parameter that cannot be directly

Before collision

After collision

+ Hint of less suppression for D_{s}^{+} wrt non-strange D

Event-Shape Engineering

• Events classified on the basis of the eccentricity, according to the magnitude of the second harmonic reduced flow vector q₂

- **Elliptic flow** for different q_2 samples:
 - \rightarrow correlation between v_2 of D mesons and soft hadrons
 - event-by-event fluctuations in the initial state

- D-meson v₂ in ESE-selected sample in 0-10% and 30-50% centrality class
- Results point to a positive correlation between D-meson v₂ and light-hadron v₂
- Models based on charm-quark transport in an hydrodynamically expanding medium reasonably describe the q₂ dependence of elliptic flow

POWLANG: EPJC 79, 494 (2019)

- DAB-MOD M&T: PRC 96 064903 (2017)
- LIDO: PRC 98 064901 (2018)
- LE CATANIA: PLB 805 135460 (2020)