B_c[±] production and decays in ATLAS

Andreas Korn, University College London Andreas.Korn@cern.ch

On behalf of the ATLAS Collaboration

ATLAS: a particle detector at the LHC

ATLAS: a particle detector at the LHC

Muon momentum resolution

LHC performance

A meson of charm & beauty

Double Heavy meson

5

+ B

Relative B_c[±]/B[±] production

- Measured in 20 fb⁻¹ of 8 TeV pp collision data
- Utilize similar decay mode for B_{c}^{\pm} and B^{\pm} :

$$\begin{split} & \mathsf{B}_{\mathsf{c}}^{\pm} \to \mathsf{J}/\psi \ \mathsf{\pi}^{\pm} \to (\mu^{+}\mu^{-}) \ \mathsf{\pi}^{\pm} \ , \quad \mathsf{B}^{\pm} \to \mathsf{J}/\psi \ \mathsf{K}^{\pm} \to (\mu^{+}\mu^{-}) \ \mathsf{K}^{\pm} \\ & \frac{\sigma(B_{c}^{\pm}) \cdot \mathcal{B}(B_{c}^{\pm} \to J/\psi \ \pi^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi \ \mathsf{K}^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{\mathrm{reco}}(B_{c}^{\pm})}{N^{\mathrm{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_{c}^{\pm})}. \end{split}$$

• Correct for efficiency differences:

$$\epsilon = \epsilon^{\text{trigger}} \cdot \epsilon^{\text{MS}}(\mu^+) \cdot \epsilon^{\text{MS}}(\mu^-) \cdot \left(\epsilon^{\text{ID}}(\mu^\pm)\right)^2 \cdot \epsilon^{\text{ID}}(X_h) \cdot \epsilon^{\text{vertex}}(B) \cdot \epsilon^{\text{selection}}(B),$$

• Extract yield, via unbinned log likelihood fit

$$\mathcal{L} = \frac{e^{-N_{\text{sig}}-N_{\text{bkg}}}}{N!} \prod_{i=1}^{N} \left[N_{\text{sig}}\mathcal{F}_{\text{signal}}(m_{J/\psi X_{h}}^{i}, \delta m_{J/\psi X_{h}}^{i}) + N_{\text{bkg}}\mathcal{F}_{\text{bkg}}(m_{J/\psi X_{h}}^{i}) \right]$$

Andreas Korn

Event selection

- Utilize similar decay mode for $\mathsf{B}_{\mathsf{c}}^{\;\pm}$ and B^{\pm} :

 $B_{c}^{\ \pm} \rightarrow J/\psi \ \pi^{\pm} \rightarrow (\mu^{+}\mu^{-}) \ \pi^{\pm} \ , \quad B^{\pm} \rightarrow J/\psi \ K^{\pm} \rightarrow (\mu^{+}\mu^{-}) \ K^{\pm}$

- Candidates formed from 3 tracks
- Rely on dimuon trigger: $p_{_{\rm T}}(\mu1,\mu2)>4$ GeV and 2.5 < m(µµ) < 4.3 GeV
- Select offline muons with opposite charge: $|\eta|$ < 2.3 and 2.6 < m(J/ ψ) < 3.5 GeV
- Hadronic (π, K) track:
 - Track momentum: $p_{T} > 2 \text{ GeV}$
 - Transverse impact parameter significance : $d0/\sigma(d0) > 1.2$
- Cut on three track vertex χ^2 /NDoF < 1.8
- Momentum of B meson candidate: $p_{T} > 13 \text{ GeV}$

B^{\pm} and B_{c}^{\pm} total dataset

arXiv:1912.02672, Submitted to PRD

Andreas Korn

Î

 B_{c}^{\pm} : 2 p_{T} bins

 $13 \text{ GeV} < p_T(B_{c}^{\pm}) < 22 \text{ GeV}$

 $p_{T}(B_{c}^{\pm}) > 22 \text{ GeV}$

Andreas Korn

BEAUTY2020

9

Î

B[±] : 2 rapidity bins

 $|y(B_{c}^{\pm})| < 0.75$

 $0.75 < |y(B_{2}^{\pm})| < 2.3$

Andreas Korn

BEAUTY2020

10

B[±] : 2 rapidity bins

 $|y(B^{\pm})| < 0.75$

 $0.75 < |y(B^{\pm})| < 2.3$

Andreas Korn

Results

Andreas Korn

Î

Results

Andreas Korn

 Measured relative production of B[±]/B[±] $- \text{ATLAS 8 TeV:} (0.34 \pm 0.04_{\text{stat}} \pm 0.02_{\text{svs}} \pm 0.01_{\text{lifetime}})\%$ $(|y| < 2.3, 13 \text{ GeV} < p_T (B_{c}^{\pm}))$ - LHCb 8 TeV: $(0.683 \pm 0.018_{stat} \pm 0.009_{syst})\%$ $(2.0 < y < 4.5, 0 < p_{_{T}} (B_{_{C}}^{\pm}) < 20 \text{ GeV})$ $(0.48 \pm 0.05_{stat} \pm 0.03_{svs} \pm 0.05_{lifetime})\%$ -CMS 7 TeV: $(|y| < 1.6, 15 \text{ GeV} < p_{T}(B_{T}^{\pm}))$

Andreas Korn

Summary and Conclusion

- ATLAS has an active B-physics program
 - Measured relative production of B_{2}^{\pm}/B^{\pm}
 - In differential bins of $p_{_{\rm T}}$ and rapidity
 - No rapidity dependence
 - Limited p_{τ} dependence, decrease with p_{τ}
- Excited B_c^{\pm} States under further investigation
- Watch this space!

Bonus Slides

Andreas Korn

m

Excited Bc

Phys. Rev. Lett. 113 (2014) 212004

Andreas Korn

17