22/09/2020 - Virtual conference session 19th International Conference on B-Physics at Frontier Machines, BEAUTY 2020

Recent results on Heavy Flavour production with the CMS experiment

Speaker: Vincenzo Mastrapasqua on behalf of the CMS Collaboration

Università degli Studi di Bari "Aldo Moro" Istituto Nazionale di Fisica Nucleare - Sez. Bari CMS Collaboration

1. Measurement of prompt open-charm production cross sections in p-p collisions at $\sqrt{s} = 13$ TeV [CMS-PAS-BPH-18-003]

- 2. Relative cross sections of $B_c(2S)^+$ and $B_c^*(2S)^+$ states with respect to the B_c^+ state in proton-proton collisions at $\sqrt{s} = 13$ TeV [arXiv:2008.08629, submitted to PRD]
- 3. Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S) $\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV [Phys. Lett. B 808 (2020) 135578]

Measurement of the differential cross-section of prompt open-charm production on 29 nb⁻¹ of pp collisions at \sqrt{s} = 13 TeV in 2016

Charm physics @ LHC: production cross section 10⁶ times greater than e⁺e⁻ machines complex initial state (PU) and high background c produced with boost in LHCb (asymmetric collisions) CMS unfavoured being a "central" detector

First result on charm production from CMS in pp collisions

Kinematic range: 4 GeV < $p_T(D)$ < 100 GeV && $|\eta(D)|$ < 2.1 **ZeroBias trigger** (the most inclusive one)

Interest in **prompt** production of D mesons (from PV or charm excited states)

•
$$D^{*+} \rightarrow D^0 \pi^+_{slow} \rightarrow K^- \pi^+ \pi^+_{slow}$$

• $D^0 \rightarrow K^- \pi^+$

• $D^+ \rightarrow K^- \pi^+ \pi^+$

Possible contamination: c from b decays

D mesons: reconstruction

Requirements:

- "high quality" tracks (no hadronic PID in CMS)
- tracks: p_T > 0.5 GeV (0.3 GeV for π_s)
- 2 (3) charged tracks combined to form D^0 (D^+) candidate
- parallel direction of the meson wrt PV-SV distance vector
- Cut on decay length significance (specific to each meson)

Reconstructed mass distributions:

D mesons: signal yield determination

 (D^{0}/D^{+}) 3rd degree polynomial (D^{*+}) phenomenological threshold function

K-π swapped background (D⁰ only):

Gaussian shape from simulation

Non prompt-contamination from charmed mesons coming from B mesons Bin-by-bin subtraction from the "visible" yield

D mesons: differential cross sections

Differential cross sections

in $\boldsymbol{p}_{_{T}}$ and pseudorapidity

$$\frac{\mathrm{d}\sigma(\mathrm{pp}\to DX)}{\mathrm{d}p_{\mathrm{T}}} = \frac{N_{i}(D\to f)}{\Delta p_{\mathrm{T}}\mathcal{B}(D\to f)\mathcal{L}\varepsilon_{i,tot}(D\to f)},$$
$$\frac{\mathrm{d}\sigma(\mathrm{pp}\to DX)}{\mathrm{d}|\eta|} = \frac{N_{i}(D\to f)}{\Delta \eta \mathcal{B}(D\to f)\mathcal{L}\varepsilon_{i,tot}(D\to f)},$$

Agreement with predictions from PYTHIA and FONLL (fixed-order next-to-leading logarithm)

• In the next slides a comparison with other results on open-charm production cross section from the **LHC experiments** is shown

• **FONLL predictions** are used to compare CMS measurements with previous results already published within LHC

• CMS measurements show a good agreement with previous results, considering the evolution in the center of mass energy scale and the kinematic dependences as described by the theory predictions

Comparison with measurements at 7 TeV

CMS vs ATLAS: same kinematic range, different \sqrt{s} : scaling with c.m. energy 29 nb⁻¹ (13 TeV) 29 nb⁻¹ (13 TeV) 10^{4} 10^{4} dσ(pp→D[`]X)/dp_⊤ [μb/GeV] dσ(pp→D⁺X)/dp_T [μb/GeV] CMS CMS 10³ 10^{3} Preliminary Preliminary CMS Data $\sqrt{s}=13$ TeV, $|\eta| < 2.1$ CMS Data $\sqrt{s}=13$ TeV, $|\eta| < 2.1$ 10² FONLL √s=13 TeV, |η| < 2.1 FONLL /s=13 TeV, |n| < 2.1 10 ATLAS Data √s=7 TeV, |η| < 2.1 ATLAS Data √s=7 TeV, |η| < 2.1 10 Nucl.Phys.B 907(2016)717 Nucl.Phys.B 907(2016)717 FONLL $\sqrt{s}=7$ TeV, $|\eta| < 2.1$ FONLL $\sqrt{s}=7$ TeV, $|\eta| < 2.1$ 10 10^{-1} 10⁻² 10^{-2} 10⁻³ 10^{-3} 10^{-4} 10^{-4} 10⁻⁵. 10⁻⁵. 0 20 40 80 0 20 60 100 40 60 80 100 p_{_} [GeV] p_{_} [GeV] CMS vs ALICE: different kinematic range factor 2 from c.c. states not included by ALICE CMS data shown for $p_{T} < 24$ GeV 29 nb⁻¹ (13 TeV) 29 nb⁻¹ (13 TeV) 29 nb⁻¹ (13 TeV) 10^{4} 10^{4} dσ(pp→D^{*}X)/dp_T [μb/GeV] $d\sigma(pp{\rightarrow}D^0X)/dp_{_{T}} [\mu b/GeV]$ dσ(pp→D⁺X)/dp_T [μb/GeV] CMS Data \sqrt{s} =13 TeV, $|\eta| < 2.1$ CMS CMS 10^{4} CMS 10³ FONLL $\sqrt{s}=13$ TeV, $|\eta| < 2.1$ 10³ Preliminary 10^{3} Preliminary ALICE Data $\sqrt{s}=7$ TeV, |y| < 0.510 JHEP 01(2012)128 FONLL /s=7 TeV, |y| < 0.5 10 10 10 10⁻² CMS Data √s=13 TeV, |η| < 2.1 CMS Data √s=13 TeV, |η| < 2.1 FONLL √s=13 TeV, |η| < 2.1 FONLL /s=13 TeV, |n| < 2.1 10^{-3} ALICE Data vs=7 TeV, |y| < 0.5 10^{-3} ALICE Data Vs=7 TeV, |y| < 0.5 0ח 10^{-1} D^+ JHEP 01(2012)128 JHEP 01(2012)128 10-4 10 FONLL /s=7 TeV, |y| < 0.5 FONLL Vs=7 TeV. V 10⁻⁵ 10-2 10^{-5} 15 0 15 20 25 0 5 10 15 20 25 0 5 10 20 25 5 10 p_T [GeV] p_T [GeV] p_{_} [GeV]

Comparison with measurements at 5.02 TeV

VIDEN RASIONAL HIGH RASIONAL Becine di Bari

p-p vs Pb-Pb @ CMS:

- different kinematic range and binning
- good agreement between theory and data

Comparison with measurements at 13 TeV

CMS vs LHCb:

 $d\sigma(pp{\rightarrow}D^{^{\star}}X)/dp_{_{T}}[\mu b/GeV]$

- complementary acceptance
- only the first rapidity bin is shown for LHCb _
- CMS data are reported only for $p_{\tau} < 16 \text{ GeV}$ _

CMS Data √s=13 TeV, |η| < 2.1

10

15

p_{_} [GeV]

FONLL √s=13 TeV, |η| < 2.1 LHCb Data \sqrt{s} =13 TeV, 2 < y < 2.5

JHEP 03(2016)159 FONLL √s=13 TeV, 2 < y < 2.5

5

 10^{-1}

 10^{-2}

 10^{-3} 0

15

p_T [GeV]

$B_{c}(2S)$ mesons production

[1] Phys. Rev. Lett. 122 (2019) 132001

★ Observation of $B_c(2S)^+$ and $B_c^*(2S)^+$ states with pp collisions at $\sqrt{s} = 13$ TeV with 143 fb⁻¹ (full Run 2) [1]

NEW Measurement of relative cross sections:

Differential cross sections in p_{T} and rapidity bins

Kinematical range: $p_T(B_c^+) > 15$ GeV and |y| < 2.4

R^{*+}: relative cross section of $B_c^*(2S)^+$ to B_c^+ **R**⁺: relative cross section of $B_c^*(2S)^+$ to B_c^+ **R**^{*+}/**R**⁺: relative cross section of $B_c^*(2S)^+$ to $B_c^*(2S)^+$

$$\begin{split} R^{+} &\equiv \frac{\sigma(\mathbf{B}_{\rm c}(2{\rm S})^{+})}{\sigma(\mathbf{B}_{\rm c}^{+})} \mathcal{B}(\mathbf{B}_{\rm c}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{+}\pi^{+}\pi^{-}) = \frac{N(\mathbf{B}_{\rm c}(2{\rm S})^{+})}{N(\mathbf{B}_{\rm c}^{+})} \frac{\epsilon(\mathbf{B}_{\rm c}^{+})}{\epsilon(\mathbf{B}_{\rm c}(2{\rm S})^{+})}, \\ R^{*+} &\equiv \frac{\sigma(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{\sigma(\mathbf{B}_{\rm c}^{+})} \mathcal{B}(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{*+}\pi^{+}\pi^{-}) = \frac{N(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{N(\mathbf{B}_{\rm c}^{+})} \frac{\epsilon(\mathbf{B}_{\rm c}^{+})}{\epsilon(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}, \\ R^{*+}/R^{+} &= \frac{\sigma(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{\sigma(\mathbf{B}_{\rm c}(2{\rm S})^{+})} \frac{\mathcal{B}(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{*+}\pi^{+}\pi^{-})}{\mathcal{B}(\mathbf{B}_{\rm c}^{*}\pi^{+}\pi^{-})} = \frac{N(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{N(\mathbf{B}_{\rm c}(2{\rm S})^{+})} \frac{\epsilon(\mathbf{B}_{\rm c}(2{\rm S})^{+})}{\epsilon(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}. \end{split}$$

 $B_c^*(2S) \Rightarrow B_c^* ππ$ followed by $B_c^* \Rightarrow B_c^+ γ_{lost}$ (≈ 55MeV: missing energy not detected) The B_c^* meson is assumed to decay to the B_c^- ground state and a soft photon with a BF of 100% ₁₁

$B_{c}(2S)$ and $B_{c}^{*}(2S)$ signal yields

$B_c^{+} \rightarrow J/\psi \pi^+$ candidates fit

N(B_c) = 7629 +/- 225 events

B_c(2S) candidates:

- $-B_{c}^{+}$ + two OS tracks
- m(J/ψπ) in [6.2, 6.355] GeV

Signal: two gaussians Background:

Combinatorial: Chebychev-3 polynomial Gaussian for each $B_c \rightarrow J/\psi K$ contribution

 $N(B_c^*(2S)^+) = 67 + -10 \text{ evts}$ $N(B_c^*(2S)^+) = 52 + -9 \text{ evts}$ $\Delta M = 28.9 + - 1.5 \text{ MeV}$

Yields enter the ratios once corrected by relative efficiencies

Details on event reconstruction and systematic uncertainties in backup

 $\begin{aligned} R^+ &= (3.47 \pm 0.63 \, (\text{stat}) \pm 0.33 \, (\text{syst}))\%, \\ R^{*+} &= (4.69 \pm 0.71 \, (\text{stat}) \pm 0.56 \, (\text{syst}))\%, \\ R^{*+} / R^+ &= 1.35 \pm 0.32 \, (\text{stat}) \pm 0.09 \, (\text{syst}). \end{aligned}$

No significative dependence of the cross section on $p_T(B_c)$ or $\eta(B_c)$ observed

Invariant mass of di-pion system

Different models [2] [3] bring to different predictions on the production ratios and di-pion system

No significant difference from phase space observed at this level of statistics and uncertainties

Measurement of fiducial cross-section for Y(1S) pair production and search for resonances decaying to Y(1S)µµ in pp collisions at $\sqrt{s} = 13$ TeV with 35.9 fb⁻¹ (2016 data)

Fiducial region: |y(Y(1S))| < 2.0 Final state: four muons

- Quarkonium pair production is an important probe for perturbative and non-perturbative processes in QCD
- Insight into particle production at LHC: single-parton scattering (SPS): dominant → strongly correlated → small |Δy| double-parton scattering (DPS): difficult to calculate → less correlated → large |Δy|
- Potential ground for discovery of tetraquark bound state or generic resonance with mass close to twice the Y(1S) mass
 tal

See Di Florio's talk tomorrow Spectroscopy #1

 $\sigma_{\rm fid} = \frac{N^{\rm corr}}{CB^2},$

 $\mathcal{B}(Y(1S)
ightarrow \mu\mu)=(2.48\pm 0.05)\%$

N^{corr} = # of Y(1S)Y(1S) events <u>corrected by efficiency</u>

Requirements:

- HLT level: OS μμ pair in Y mass window + third muon
- 4 muons in final state paired in Y states
- p_{τ} thresholds for barrel/endcap after pairs are formed - veto on $J/\psi \rightarrow \mu\mu$

Events corrected by efficiency and acceptance

2D UML simultaneous fit on two µµ invariant masses:

Signal: sum of two CB with same mean (shape from simulation *in backup*) Background: Y(2S), Y(3S): gaussian combinatorial: 2nd order Chebychev

 $\sigma_{\rm fid} = 79 \pm 11 \, (\text{stat}) \pm 6 \, (\text{syst}) \pm 3 \, (\mathcal{B}) \, \text{pb},$

Result assuming Y(1S) unpolarised

Consistent with CMS measurement at 8 TeV [JHEP 05 (2017) 013]

9.5

10

10.5 m_{34} (GeV)

Observed

S) + Y(1S)

Comb. + comb

Ge

1200

events

Corr.

35.9 fb⁻¹ (13 TeV)

Y(15) + comb

Total

--- Y(35) + X

Measurement of DPS-to-inclusive fraction

Bottomonia from DPS are less correlated than SPS: in DPS larger |Δy(Y(1S), Y(1S))|

Shapes from SPS and DPS separately extracted from MC

$$f_{\rm DPS} = \frac{\sigma_{\rm fid}^{\rm DPS}}{\sigma_{\rm fid}^{\rm SPS} + \sigma_{\rm fid}^{\rm DPS}},$$

DPS: PYTHIA SPS: HELAC-Onia + NLO*CSM predictions

f_{DPS} estimated from fit on fiducial cross section in |Δy(Y(1S), Y(1S))| and m(Y(1S)Y(1S)) bins $f_{DPS} = \begin{cases} (39 \pm 14)\% & using |\Delta y(\Upsilon(1S), \Upsilon(1S))| \\ (27 \pm 22)\% & using m_{\Upsilon(1S)\Upsilon(1S)} \end{cases}$

Conclusions

- LHC provides high luminosity: heavy flavour production cross section several order of magnitudes greater than e-e colliders
- CMS exploits its 4π coverage and high resolution to perform challenging measurements in Heavy Flavour physics
- The presented recent CMS measurements concern from charmed mesons to double bottomonia production and they are generally in good agreement with previous LHC results (when available)
- Recent results from the CMS proved that the experiment is suitable for challenging measurements in Heavy Flavour physics, so further investigation on Quantum Chromo-dynamics will be possible

THANKS FOR YOUR ATTENTION

contacts: vincenzo.mastrapasqua@uniba.it vincenzo.mastrapasqua@cern.ch

Variables	D*+	D^0	D ⁺
PV selection:	largest $\sum p_T^2$	largest $\sum p_T^2$	largest $\sum p_T^2$
Tracks: p _T ^{min} [GeV]	0.5 (0.3 for the π_s)	0.8	0.7
Tracks: reduced χ^2	< 2.5 (3 for the π_s)	< 2.5	< 2.5
Tracks: N Tracker Hits	\geq 5 (> 2 for the π_s)	≥ 5	≥ 5
Tracks: N Pixel Hits	\geq 2 (none for the π_s)	≥ 2	≥ 2
Tracks: IP _{xy} [cm]	< 0.1 (sig. < 3 for π_s)	< 0.1	< 0.1
Tracks: IP _z [cm]	< 1 (sig. < 3 for π_s)	< 1	< 1
$ M_{cand} - M^{PDG} $ [GeV]	< 0.023	< 0.10	< 0.10
SV fit CL	> 1%	> 1%	>1%
Pointing, $cos\Phi$	> 0.99	> 0.99	> 0.99
L significance:	> 3	> 5	> 10
Arbitration	min ΔM	min $ M(K\pi) - M^{PDG}(D^0) $	min $ M(K\pi\pi) - M^{PDG}(D^+) $

D mesons: D* threshold function and systematic uncertainties

Phenomenological threshold function for D* background:

- M_0 : endpoint = pion mass
- p_0, p_1, p_2 :parameters

$$f = \left(1 - e^{-\frac{\Delta M - M_0}{p_0}}\right) \left(\frac{\Delta M}{M_0}\right)^{p_1} + p_2 \left(\frac{\Delta M}{M_0} - 1\right)$$

Systematic uncertainties

	Relative uncertainties (%)		
	D*+	D^0	D^+
Signal efficiency calculation	0.3	0.3	3.5
Secondary decay contamination	2.9	0.8	1.4
PU reweighting	1.0	1.0	2.0
Branching fraction	1.1	0.8	1.7
Tracking efficiency	9.4	4.2	6.1
Signal modeling	3.6	5.0	4.2
Background modeling	1.2	4.8	8.0
Luminosity	2.5	2.5	2.5
Time-dependent inefficiencies	1.4	1.4	1.4
Total	11.0	8.7	12.2

D mesons: differential cross section

B_c(2S): hyperfine structure

 $B_c^*(2S) \rightarrow B_c^* \pi^+ \pi^-$ followed by $B_c^* \rightarrow B_c^- \gamma_{lost}$

Soft photon (55 MeV in the rest frame) not detected, we end up seeing $B_c^*(2S) \rightarrow B_c \pi^+ \pi^-$ plus "missing energy" Same final state as $B_c(2S) \rightarrow B_c \pi^+ \pi^-$

A two-peak structure in the Bc $\pi^+ \pi^-$ mass distribution is expected, with the B_c(2S)* peak at a mass shifted by $\Delta M = [M(B_c^*) - M(B_c)] - [M(B_c^*(2S)) - M(B_c(2S))]$ which is predicted to be around 20 MeV.

The two-peak can be appreciated only if ΔM value is larger than experimental resolution!

Predictions indicate:

 $[M(B_c^*(1S)) - M(B_c(1S))] > [M(B_c^*(2S)) - M(B_c(2S))]$ that would imply that the $B_c^*(2S) \text{ peak is the lower peak!}$

$B_{c}(2S)$: event selection

HLT Requirements (DoubleMu4_JpsiTrk_displaced):

- OS muon pair in [2.9, 3.3] GeV
- dimuon vertex χ^2 probability > 10%
- distance of closest approach between muons < 0.5 cm
- significance(flight distance) > 3
- p_τ(μ) > 4 GeV && |η(μ)| < 2.5
- cos(dimuon_transverse_pointing_angle) > 0.9 (*)
- third track (from $\mu\mu$ -vtx, p_{τ} > 1.2 GeV, η < 2.5, sip > 2) p

Offline requirements:

- Muons matching trigger muons
- High quality muons
- $|\eta(\mu)| < 2.4$ and cos(dimuon_transverse_pointing_angle) > 0.98 (*)
- muons close in angular space: $(\Delta \eta)^2 + (\Delta \phi)^2 < 1.2^2$

Integrated Luminosity per year: 2.8, 36.1, 42.1, 61.6 1/fb

 $B_{a}(2S) \rightarrow B_{a} \pi^{+} \pi^{-}$

<u>B_c candidates fit</u>

Signal: weighted sum of two gaussians with same mean

w = 0.47 $\sigma_1 = 21 \text{ MeV}$ $\sigma_2 = 42 \text{ MeV}$

Background:

- Combinatorial: Chebychev polynomial
- $J/\psi K$: shape from simulation
- J/ $\psi\pi$ + X: ARGUS function

 $N(B_{c}) = 7629 + -225$ events

$$wG(\mu,\sigma_1)+(1-w)G(\mu,\sigma_2),$$

same mean
$$wG(\mu$$

VIEW VIEW RATE

Reconstruction efficiencies (MC studies):

- statistical: finite size of simulated events
- dispersion: average over four years
- pions: π reconstruction efficiency

	Central	Stat.	Spread	Pions
$\epsilon(B_c(2S)^+)/\epsilon(B_c^+)$	0.196	1.1%	1.8%	4.2%
$\epsilon(\mathrm{B}^*_\mathrm{c}(\mathrm{2S})^+)/\epsilon(\mathrm{B}^+_\mathrm{c})$	0.187	1.0%	1.6%	4.2%
$\epsilon(B_c^*(2S)^+)/\epsilon(B_c(2S)^+)$	0.955	1.4%	0.9%	s <u>—</u> 12

Systematic uncertainties:		R^+	R^{*+}	R^{*+}/R^{+}
Systematic uncertainties.	$J/\psi \pi^+$ fit model	5.5	5.5	<u>a a</u>
- from signal yield	$B_c^+ \pi^+ \pi^-$ fit model	5.9	2.9	2.9
(avaluated with different fit models)	Efficiencies: statistical uncertainty	1.1	1.0	1.4
(evaluated with different in models)	Efficiencies: spread among years	1.8	1.6	0.9
- from efficiency	Efficiencies: pion tracking	4.2	4.2	1000
	Decay kinematics	1.5	6.9	4.2
- from correlations in di-pion kinematics	Helicity angle	1.0	6.0	3.5
	Total	9.5	12.0	6.4

Results:

 $\begin{aligned} R^+ &= (3.47 \pm 0.63 \, (\text{stat}) \pm 0.33 \, (\text{syst}))\%, \\ R^{*+} &= (4.69 \pm 0.71 \, (\text{stat}) \pm 0.56 \, (\text{syst}))\%, \\ R^{*+} / R^+ &= 1.35 \pm 0.32 \, (\text{stat}) \pm 0.09 \, (\text{syst}). \end{aligned}$

HLT requirements:

- three muons
- two muons with mass in [8.5, 11.4] GeV
- dimuon vertex χ^2 probability > 0.5%

Offline requirements:

- $p_{T}(\mu) > 2 \text{ GeV}$ and $|\eta(\mu)| < 2.4$
- Best vertex- χ^2 for arbitration of best muon combination (98% eff on MC)
- Three (of four) muons must be associated with trigger muons
- μμ mass closest to Y(1S) world-average for arbitration
- New p_T threshold for muons: $p_T(\mu) > 2.5 \text{ GeV}$
- prob(χ^2 , 4 μ) > 5% and prob(χ^2 , Y(1S)) > 0.5%
- muons separated with $\Delta R > 0.02$
- on OS mixed-pairs: veto on J/ ψ mass
 - (window of 2σ , resolution depends on kinematics in [0.03, 0.12] GeV)

Extra requirements (Y(1S) pair only):

- |y(μμ)| < 2.0
- $p_T(\mu) > 3.5$ GeV for central muons, $|\eta(\mu)| < 0.9$

Extra requirements (resonance search only):

- mass of Y(1S) candidate within 2σ, resolution depends on kinematics in [0.06, 0.15] GeV

.

Process	Uncorrected yield	
Y(1S) + Y(1S)	111 ± 16	
Y(2S) + Y(2S)	3.6 + 4.4 - 3.6	
Y(3S) + Y(3S)	$1.1^{+1.4}_{-1.1}$	
Y(1S) + combinatorial	166 ± 33	
Y(2S) + combinatorial	25 ± 18	
Y(3S) + combinatorial	$1.1^{+11}_{-1.1}$	
Y(2S) + Y(1S)	19 ± 10	
Y(3S) + Y(1S)	17 ± 11	
Combinatorial + combinatorial	561 ± 41	

Event-by-event weight:

$$\omega = \left[A_1 A_2 \epsilon_1^{\text{reco}} \epsilon_2^{\text{reco}} \left(1 - (1 - \epsilon_1^{\text{vtx}})(1 - \epsilon_2^{\text{vtx}})\right) \epsilon^{\text{evt}}\right]^{-1},$$

- A: acceptance for Y(1S) to $\mu\mu$ in fiducial region
- ϵ^{reco} : probability that a Y(1S) to $\mu\mu$ with |y(Y(1S))| < 2.0 and $|\eta(\mu)| < 2.4$ is selected
- ϵ^{vtx} : probability that a selected Y(1S) has prob(χ^2 , Y(1S)) > 0.5%
- ϵ^{evt} : probability that a selected event has prob(χ^2 , 4 μ) > 5% and cross-paired muons have invariant mass out of [m(J/ ψ) 2 σ , m(J/ ψ) + 2 σ]

Shape of Y(1S) signal from simulation:

- Sum of two Crystal Ball with same mean
- Different resolutions for barrel/end-cap muons

Y(1S) pair polarization assumed to be negligible in acceptance and efficiency corrections

Previous measurements from CMS [A] and LHCb [B] show no polarization in single Y(1S) production

Polarization affects the angular distribution of the Y(1S) $\rightarrow \mu\mu$ decay products:

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\cos\theta\,\mathrm{d}\phi} \propto \frac{1}{3+\lambda_\theta} (1+\lambda_\theta\cos^2\theta+\lambda_\phi\sin^2\theta\cos2\phi+\lambda_{\theta\phi}\sin2\theta\cos\phi),$$

- (θ , ϕ) direction of μ^+
- $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$: angular distribution parameters

Effect of polarization on fiducial cross section:

Uncertainty source	Uncertainty (%)	Impact on $\sigma_{\rm fid}$ (pb)
Integrated luminosity	2.5	2.0
Muon identification	2.0	1.6
Trigger	6.0	4.7
Vertex probability	1.0	0.8
$\mathcal{B}(Y(1S) \rightarrow \mu^+ \mu^-)$	4.0	3.2
Signal and background models	1.2	1.0
Method closure	1.5	1.2
Total	8.1	6.4

Search for resonance in Y(1S) $\mu\mu$

New variable to improve resolution by 50% for signal events

$$\widetilde{m}_{4\mu} = m_{4\mu} - m_{\mu\mu} + m_{\rm Y(1S)},$$

Background sources:

- non resonant YY (from MC):

sigmoid * exponential - combinatorial:

from control region: 4μ -vtx χ^2 in [10⁻¹⁰, 10⁻³]

Example signal for a tetraquark (modeled as χ_{b1} (1P)) of m = 19 GeV and significance 1 σ

Upper limits @ 95% CL for resonance production

Largest excess at m = 25.1 GeV scalar hypothesis 2.4o of local significance

No excess of events compatible with a signal is observed

