

Charmed-Meson Physics at Belle II

Guanda Gong gonggd@mail.ustc.edu.cn University of Science and Technology of China on behalf of the Belle II collaboration Sep 22, 2020 – Beauty 2020, online

Outline

SuperKEKB and Belle II Detector

Status and Prospects of Charmed-Meson Physics

- Time-Integrated Measurements
 - □ Time-integrated *CP* violation
- Time-Dependent Measurements
 D⁰ lifetime measurement
 D⁰-D
 ⁰mixing
- Full Charm Event Reconstruction
 - Leptonic, rare decays

Conclusions

SuperKEKB and Belle II Detector 🤽

Belle II detector

e- 7 GeV 2.6 A

Electron-Positron linear accelerator

collision point

• $E_{CM} = 10.58 \text{ GeV} (\Upsilon(4S))$

- **Designed peak luminosity**
 - $= 6.5 \times 10^{35} \text{ cm}^{-2} s^{-1}$
 - $= 6.5 \times 10^2$ nb⁻¹s⁻¹
- $ee \rightarrow c\bar{c}$ cross section ≈ 1.3 nb @10.58 GeV

Nano beams technique beam size \downarrow 20 times currents 1 2 times

Positron damping ring

SuperKEKB

Electron ring

Positron ring

e+ 4 GeV 3.6 A

KEK Laboratory -

Tsukuba, Japan

KEKB e⁺/e⁻ SuperKEKB e⁺/e⁻ E (GeV): 3.5/8.0 E (GeV): 4.0/7.0 I (A): ~ 1.6/1.2 I (A): ~ 3.6/2.6 $\beta_{v}^{*}(mm): \sim 5.9/5.9$ $\beta_{v}^{*}(mm): \sim 0.27/0.3$ Crossing angle (mrad): 22 Crossing angle (mrad): 83

SuperKEKB and Belle II Detector

Belle II Detector

Vertex Detector

PXD: 2 layers **DEPFET** pixels detector

- Beampipe r= 10 mm
- Layer 1 r=14 mm
- Layer 2 r= 22 mm

SVD: **4** layers double side Si strips detector (DSSD)

EM Calorimeter CsI(TI), waveform sampling (barrel) $K_L \& \mu$ detector Resistive Plate Char (barrel outer layers

Resistive Plate Chambers (barrel outer layers) Scintillator + WaveLength Shifting Fibers + Multi-Pixel Photon Counter (end-caps, inner 2 barrel layers)

> 7.1 M

Particle Identification Time-of-Propagation counter (barrel) Proximity focusing Aerogel RICH (fwd)

Central Drift Chamber

He(50%): $C_2H_6(50\%)$, small cell size, long lever arm, fast electronics

Belle II

SuperKEKB and Belle II Detector

□ Target dataset : 50 ab^{-1} (50×Belle)

- **\Box** Current integrated luminosity (2019-2020) \approx 74 fb⁻¹
- □ New world record luminosity (June 2020) $\approx 2.4 \times 10^{34} \text{cm}^{-2} s^{-1}$

> $2.11 \times 10^{34} \text{ cm}^{-2} s^{-1}$ (Belle, June 2009)

Time-Integrated Measurements

- Time-integrated *CP* violation : Prospect@50 ab⁻¹

- CP violation is a sensitive probe to physics beyond SM
- Time-integrated CP violation could be measured by:

$$\square A_{CP} = \frac{N_{D^0 \to f} - N_{\overline{D}^0 \to \overline{f}}}{N_{D^0 \to f} + N_{\overline{D}^0 \to \overline{f}}}$$

- Belle II would produce important measurement especially for channels containing neutral final states
- Measured A_{CP} will reach a precision of $o(10^{-4})$, also in channels with neutrals in the final state 2020/9/22

Mode	$\mathcal{L}(\mathbf{fb}^{-1})$	А _{СР} (%)	Belle II 50 ab ⁻¹
$D^0 \to K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
$D^0 ightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 o \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 \rightarrow K^0_{\rm S} \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02
$D^0 \rightarrow K^0_{\rm S} K^0_{\rm S}$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23
$D^0 o K^0_{ m S} \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 ightarrow K_{ m S}^0 \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	±0.13
$D^0 \rightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
$D^+ \rightarrow \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	±0.14
$D^+ \rightarrow K^0_{ m S} \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02
$D^+ \rightarrow K^0_{\rm S} K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04
$D_s^+ \rightarrow K_{\rm S}^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D_s^+ \to K_{\rm S}^{\bar{0}} K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05
$\overline{D_s^+ \to K^+ \pi^0}$			

Belle II Physics Book; PETP 2019, 123C01 (2019)

$$\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2) \cdot (\mathcal{L}_{\text{Belle}} / 50 \,\text{ab}^{-1}) + \sigma_{\text{irred}}^2}$$

Time-Integrated Measurements — Time-integrated *CP* Violation : Current Status

Time-Integrated Measurements — Time-integrated *CP* Violation : Current Status

008 CC2 007 Ce//C2

Candidates

 $D_s^+ \to \overline{K}^{*0}[K^-\pi^+]K^+$

 $N_{sig}/fb^{-1} = 452 \pm 21$

1.95

1.96

1.97 1.98

 M_{D^+} [GeV/c²]

 $\chi^2/ndf = 0.82$

1.94

1.93

Belle II (Preliminary)

 $\int L dt = 8.8 \text{ fb}^{-1}$

1.99

2.01

2.02

- Three D_S^+ channels are also rediscovered in the data:
 - $\square D_S^+ \to \phi \pi^+$
 - $\square D_s^+ \to \overline{K}^{*0} \pi^+$
 - $\square D_s^+ \to K_s^0 \pi^+$
- Rediscoveries of other channels are in progress

^{2020/9/22}

Time-Dependent Measurements — *D*⁰ lifetime measurement

- Proper time resolution at Belle II is a factor of 2 better than Belle & BaBar, thanks to the improved vertex detector and the <u>"nano-beams" technique</u>

 - Belle II VXD = 2 layers DEPFET pixels + 4 layers DSSD

Distance from first layer to beam: 14 mm

Sensitivity for mixing parameters would benefit from such resolution improvement. An example of Toy MC study for $D^0 \rightarrow K\pi$:

estimated error on	current HFLAV	Belle scaled to 50/ab	Toy MC 50/ab, CPV
x' (%)	-	(*) 0.45 -	→ 0.15
x' ² (%)	-	0.009	_
y' (%)	-	0.16 -	→ 0.10
q/p	~ 0.09	_	0.051
φ (°)	~ 9	_	5.7

2020/9/22

Time-Dependent Measurements - $D^0 - \overline{D}^0$ mixing: brief introduction

- Mass eigenstates and flavor eigenstates $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$
- Definition of mixing parameters

CP violation in mixing

Direct CP violation

 $\left|\frac{A_{\overline{f}}}{A_{c}}\right| \neq 1$

CP violation in pure mixing $\left|\frac{q}{n}\right|^2 \neq 1$, $\phi = \operatorname{Arg}\left(\frac{q}{n}\right) \neq 0$

CP violation in interference of decay amplitudes with and without mixing

$$\frac{q}{p}\frac{\bar{A}_f}{A_f} \neq 1$$

Time-Dependent Measurements

 D^0

Mixing

 $D^0 - \overline{D}^0$ mixing: $D^0 \to K_S \pi^+ \pi^-$ time-dependent Dalitz analysis

CF/DCS

- Time-dependent amplitude fit In self-conjugate channels like $D^0 \rightarrow K_{\rm S} \pi^+ \pi^-$, x and y parameters could be easily disentangle from the strong phase.
- Mixing parameters sensitivity $@50 \text{ ab}^{-1}$

$$\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2) \cdot (\mathcal{L}_{\text{Belle}} / 50 \text{ ab}^{-1}) + \sigma_{\text{irred}}^2}.$$

□ The improved proper time resolution is not considered

Data	stat.	sy	st.	Total	stat.	sy	st.	Total
		red.	irred.			red.	irred.	
		<i>x</i> ((10^{-2})			у (10 ⁻²)	
$976 {\rm ~fb^{-1}}$	0.19	0.06	0.11	0.20	0.15	0.06	0.04	0.16
5 ab^{-1}	0.08	0.03	0.11	0.14	0.06	0.03	0.04	0.08
$50 \mathrm{~ab^{-1}}$	0.03	0.01	0.11	0.11	0.02	0.01	0.04	0.05
		q/p	(10^{-2})			ϕ	(°)	
$976 {\rm ~fb^{-1}}$	15.5	5.2 - 5.6	7.0-6.7	17.8	10.7	4.4 - 4.5	3.8 - 3.7	12.2
5 ab^{-1}	6.9	2.3 - 2.5	7.0-6.7	9.9 - 10.1	4.7	1.9 - 2.0	3.8 - 3.7	6.3 - 6.4
50 ab^{-1}	2.2	0.7 - 0.8	7.0-6.7	7.0-7.4	1.5	0.6	3.8 - 3.7	4.0-4.2

Belle II Physics Book; PETP 2019, 123C01 (2019)

2020/9/22

Time-Dependent Measurements $D^0 - \overline{D}^0$ mixing: $D^0 \to K_S \pi^+ \pi^-$ time-dependent Dalitz analysis

 Proper time resolution comparable to the ones observed in lifetime analysis

 Sensitivity study for mixing and CPV parameters measurements, with the consideration of resolution of Belle II detector, is ongoing.

Full Charm Event Reconstruction

Method: Tag the D meson in the rest of event, deduce the kinematic information of desired final state by information of other particles

Light mesons (K, π, \dots ...)

 $e^+e^- \rightarrow c\bar{c} \rightarrow D_{\text{tag}}X_{\text{frag}}D_{\text{sig}} \longrightarrow \text{signal channel}$ Reconstructed in several channels $(D^0, D^*, D_s \dots)$

- Useful in: inclusive branching fraction measurement, (semi-)leptonic study, rare/forbidden decays search
- Example: recoiled method for D_S leptonic decays
 - $\square \qquad e^+e^- \to c\bar{c} \to D_{\text{tag}}X_{\text{frag}}KD_s^{*+}, \quad D_s^{*+} \to D_s^+\gamma, \quad D_s^+ \to \mu^+\nu$

$$P_{miss} = P_{cms} - P(D_{tag}X_{frag}K\gamma\mu)$$

Events / (0.01 GeV²/c⁴

Pull

Expected signal yields @50 ab⁻¹

Mode	Belle	Belle II
	$(0.91, 0.92 \mathrm{ab}^{-1})$	(50 ab^{-1})
$\overline{D_s^- o \mu^- \bar{ u}}$	492 ± 26	27 000
$D^- o \mu^- ar{ u}$		1250
Inclusive $D^0 \rightarrow$ anything	$(695\pm2)\times10^3$	$38 \times 10^{\circ}$

Belle II Physics Book; PETP 2019, 123C01 (2019) 2020/9/22 Beauty 2020

Conclusions

- Belle II is expected to have important contribution for many charm measurements, and we are moving forward with the newly collected data.
 - Designed peak luminosity of **SuperKEKB** : 6.5×10^{35} cm⁻²s⁻¹
 - Target dataset: 50×Belle
- The resolution for proper time and release energy Q are better than Belle, owing to the new vertex detector and "nano beams" technique.
 - Proper time resolution improves a factor of ~2
 - In $D^0 \to K_S \pi^+ \pi^-$ channel, the resolution of Q improves a factor of ~2
- Some nice works are ongoing and there will be more exciting results in the coming years.