

NORMAL

Alberto Lusiani

Scuola Normale Superiore and INFN, sezione di Pisa

Kavli IPMU, Tokyo, 21-24 September 2020

Introduction

observation of rare, LFV, LNV *D* decays may reveal Physics beyond Standard Model e.g., leptoquarks, R-parity violating Susy, Z' (Bause *et al.*, Eur.Phys.J.C 80 (2020) 1, 65)

$D^0 o {\cal K}^- \pi^+ e^+ e^-$ (rare)	$egin{aligned} D^0 & ightarrow h'^{\pm} h^{\mp} \ell'^{\pm} \ell^{\mp} & (LFV), \ D^0 & ightarrow h'^{\pm} h^{\pm} \ell'^{\mp} \ell^{\mp} & (LFV, LNV), \ D^0 & ightarrow X_h^0 e'^{\pm} \mu^{\mp} & (LFV) \end{aligned}$
► $\mathcal{B}(SM) \sim 10^{-6}$, VDM production,	• $\mathcal{B}(SM) \sim 10^{-40}$ (neutrino mixing)
dominated by $D^0 \to K^{*0} \rho^0 (\to \gamma \to e^+ e^-)$	• $\mathcal{B}(NP)$ up to $\sim 10^{-5}$
▶ $\mathcal{B}(NP)$ up to ~10 ⁻⁵	► BES III PRD 99 (2019) 112002,
▶ LHCb PLB 757 (2016) 558	E791 PRL 86 (2001) 3969:
$\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \pm 0.40) \cdot 10^{-6}$	$\mathcal{B}(D^0 \to h'^{\pm}h^{\mp}\ell'^{\pm}\ell^{\mp})$
for 0.675 < $m(\mu^+ \mu^-)$ < 0.875 GeV/ c^2	$\mathcal{B}(D^0 \to h'^{\pm}h^{\pm}\ell'^{\mp}\ell^{\mp}) < (0.3-55.3) \cdot 10^{-5}$
▶ E791 PRL 86 (2001) 3969	$\mathcal{B}(D^0 \to X_h^0\ell'^{\pm}\ell^{\mp})$
${\cal B}(D^0 o {\cal K}^- \pi^+ e^+ e^-) < 38.5 \cdot 10^{-5}$	

BABAR asymmetric **B**-factory, 1999-2008

- primary purpose: time-dependent CP violation of coherent B pairs
- secondarily: general purpose heavy flavour factory

$D^0 ightarrow K^- \pi^+ e^+ e^-$

Phys. Rev. Lett. 122, 081802, 2019

• measure
$$\frac{\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-)}{\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)}$$
 where $D^{*+} \to D^0 \pi^+$
• signal mode data sample: "on-peak" & "off-peak" CM energy collisions, $\mathcal{L} = 468.2 \pm 2.0 \text{fb}^{-1}$
• normalization mode data sample: only "off-peak" CM energy collisions, $\mathcal{L} = 38.3 \pm 0.2 \text{fb}^{-1}$
• select events with D^0 candidate decays into 4 tracks with appropriate PID and charge
Bremsstrahlung energy recovery algorithm is applied to the electrons
• $p_{D^0}^* > 2.4 \text{ GeV}/c$
• suppress combinatorial background, mainly from QED processes
• (also removes D^0 from B decays)
• $\text{Prob}[\chi^2(\text{vertex fit})] > 0.005$ to ensure good-quality vertex
• veto background from hadronic D^0 decays with misidentification of hadrons to leptons
• veto $|m(D^0)_{\text{reco}} - m(D^0)| < 20 \text{ MeV}/c^2$ and $|\Delta m_{\text{reco}} - \Delta m| < 2 \text{ MeV}/c^2$ $[\Delta m = m(D^{*0}) - m(D^0)]$
when assuming kaon or pion mass hypotheses for identified leptons

Signal yield, branching fraction fit $[m(D^0), \Delta m]$ and measurement

simultaneous unbinned extended maximum-likelihood fit on m(D⁰) and Δm
 require 1.81<m(D⁰)<1.91 GeV/c², 0.143<Δm<0.148 GeV/c², 0.675<m(e⁺e⁻)<0.875 GeV/c²
 signal: m(D⁰) and Δm modeled with asymmetric-sigma Gaussian
 background: m(D⁰) modeled with 1st order polynomial, Δm modeled with ARGUS function

Distributions of $m(e^+e^-)$ and $m(K^-\pi^+)$

$D^0 \rightarrow K^- \pi^+ e^+ e^-$

Distribution of $0.2 < m(e^+e^-) < 1.25 \,\mathrm{GeV}/c^2$

background is subtracted with the sPlot technique

"continuum" yield corresponds to areas outside highlighted resonances

$m(e^+e^-)$ [GeV/ c^2]	N _{sig}	signif. [σ]	\mathcal{B} $[\cdot 10^{-6}]$	$\mathcal{B}_{90\%}^{\text{U.L.}} \ [\cdot 10^{-6}]$	
0.675 - 0.875	68 ± 9	9.7	$4.0 \pm 0.5 \pm 0.2 \pm 0.1$	-	
ϕ region	$3.8^{+2.7}_{-1.9}$	1.8	$0.2^{+0.2}_{-0.1}\pm 0.1$	0.5	
continuum	19 ± 7	2.6	$1.6\pm0.6\pm0.7$	3.1	
(upper limits obtained with Feldman-Cousins method) no evidence for short-distance NP production in continuum areas					

$\overline{D^0 \to h'^- h}^+ \ell'^\pm \ell^\mp$ and $\overline{D^0 \to h'^- h^- \ell'^+ \ell^+}$

Phys. Rev. Lett. 124 (2020) 7, 071802

$$D^0 \rightarrow h'^- h^+ \ell'^\pm \ell^\mp \& D^0 \rightarrow h'^- h^- \ell'^+ \ell^+$$
 selection (1)

part of the analysis proceeds similarly to $D^0 o {\cal K}^- \pi^+ e^+ e^-$

- ▶ signal mode data sample: "on-peak" & "off-peak" CM energy collisions, $\mathcal{L} =$ 468.2 \pm 2.0fb⁻¹
- normalization modes data sample: only "off-peak" CM energy collisions, $\mathcal{L} = 38.3 \pm 0.2 {
 m fb}^{-1}$
- Bremsstrahlung energy recovery algorithm is applied to the electrons
- $p_{D^0}^* > 2.4 \, \text{GeV}/c$
 - suppress combinatorial background, mainly from QED processes
 - (also removes D^0 from *B* decays)
- ▶ Prob[\u03c6²(vertex fit)] > 0.005 to ensure good-quality vertex
- veto background from hadronic D⁰ decays with misidentification of hadrons to leptons
 - ▶ veto $|m(D^0)_{\text{reco}} m(D^0)| < 20 \text{ MeV}/c^2$ and $|\Delta m_{\text{reco}} \Delta m| < 2 \text{ MeV}/c^2$ $[\Delta m = m(D^{*0}) m(D^0)]$ when assuming kaon or pion mass hypotheses for identified leptons

 $D^0 \rightarrow h'^- h^+ \ell'^\pm \ell^\mp$ and $D^0 \rightarrow h'^- h^- \ell'^+ \ell^+$

$$D^0 \rightarrow h'^- h^+ \ell'^{\pm} \ell^{\mp} \& D^0 \rightarrow h'^- h^- \ell'^+ \ell^+$$
 selection (2)

distinctive procedures

- select events with D^0 candidate decays into 4 tracks with appropriate PID and charge
- ► normalization modes: $D^0 \to \pi^- \pi^+ \pi^+ \pi^-$, $D^0 \to K^- \pi^+ \pi^+ \pi^-$, $D^0 \to K^- K^+ \pi^+ \pi^-$
- tighter PID
- multivariate discriminant (MVA) to reject $e^+e^- \rightarrow c\bar{c}$ background, tuned for each signal mode
 - **•** inputs: D^0 candidate tracks momenta, shape variables of event, D^{*+} , rest-of-event
- rather than doing simultaneous fits to m(D⁰) and Δm
 cut on m(D⁰) (within 3× reconstruction resolution) and do maximum-likelihood fit to Δm only

Signal + background fits on Δm distribution

signal: modeled with Cruijff function

background: modeled with ARGUS function

 $D^0 \rightarrow h'^- h^+ \ell'^\pm \ell^\mp$ and $D^0 \rightarrow h'^- h^- \ell'^+ \ell^+$

 $D^0 \rightarrow h'^- h^+ \ell'^\pm \ell^\mp$ and $D^0 \rightarrow h'^- h^- \ell'^+ \ell^+$

		Results			
Decay mode	$N_{ m sig}$	$\epsilon_{ m sig}$	$\mathcal{B}_{\overline{z}}$	\mathcal{B}	90%
$D^0 ightarrow$	[candidates]	[%]	[×10 ⁻⁷]	[×]	10-1]
				BABAR	previous
$\pi^-\pi^-\mathrm{e^+e^+}$	$0.22 \pm 3.15 \pm 0.54$	$\textbf{4.38} \pm \textbf{0.05}$	$0.27 \pm 3.90 \pm 0.67$	9.1	1120
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91 ± 0.05	$7.40 \pm 5.40 \pm 0.91$	15.2	290
$\pi^-\pi^-\mathrm{e}^+\mu^+$	$12.42 \pm 5.30 \pm 1.45$	$\textbf{4.38} \pm \textbf{0.05}$	$15.41 \pm 6.59 \pm 1.85$	30.6	790
$\pi^-\pi^+$ e $^\pm\mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	$\textbf{4.79} \pm \textbf{0.06}$	$1.55 \pm 6.97 \pm 1.45$	17.1	150
$K^-\pi^-\mathrm{e^+e^+}$	$-0.23 \pm 0.97 \pm 1.28$	$\textbf{3.19} \pm \textbf{0.05}$	$-0.38 \pm 1.60 \pm 2.11$	5.0	28
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	$\textbf{3.30} \pm \textbf{0.05}$	$-0.05 \pm 3.34 \pm 0.64$	5.3	3900
${\it K}^-\pi^-{ m e}^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	$\textbf{3.48} \pm \textbf{0.04}$	$5.84 \pm 5.97 \pm 3.56$	21.0	2180
${\cal K}^-\pi^+$ e $^\pm\mu^\mp$	$2.52 \pm 4.60 \pm 1.35$	3.65 ± 0.05	$3.62 \pm 6.61 \pm 1.95$	19.0	5530
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	$\textbf{3.25}\pm\textbf{0.04}$	$0.43 \pm 1.54 \pm 0.58$	3.4	1520
$K^-K^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	$\textbf{6.21} \pm \textbf{0.06}$	$-0.81 \pm 0.96 \pm 0.32$	1.0	940
$K^-K^-e^+\mu^+$	$1.93 \pm 1.92 \pm 0.83$	4.63 ± 0.05	$1.93 \pm 1.93 \pm 0.84$	5.8	570
$K^-K^+e^\pm\mu^\mp$	$4.09 \pm 3.00 \pm 1.59$	$\textbf{4.83} \pm \textbf{0.05}$	$3.93 \pm 2.89 \pm 1.45$	10.0	1800

(90% Confidence Level (CL) Upper Limits (UL) calculated using Feldman-Cousins method) BABAR, Phys. Rev. Lett. 124 (2020) 7, 071802 previous upper limits improved by order $100 \times$

$D^0 o X^0 e^\pm \mu^\mp$

Phys. Rev. D 101 (2020) 11, 112003

$$D^0 \to X^0 e^{\pm} \mu^{\mp}$$
 selection (1)

part of the analysis proceeds similarly to $D^0 o K^- \pi^+ e^+ e^-$

- ▶ signal mode data sample: "on-peak" & "off-peak" CM energy collisions, $\mathcal{L} =$ 468.2 \pm 2.0fb⁻¹
- normalization modes data sample: only "off-peak" CM energy collisions, $\mathcal{L} = 38.3 \pm 0.2 {
 m fb}^{-1}$
- Bremsstrahlung energy recovery algorithm is applied to the electrons
- $p_{D^0}^* > 2.4 \, \text{GeV}/c$
 - suppress combinatorial background, mainly from QED processes
 - (also removes D^0 from *B* decays)
- Prob[χ²(vertex fit)] > 0.005 to ensure good-quality vertex
- veto background from hadronic D⁰ decays with misidentification of hadrons to leptons
 - ▶ veto $|m(D^0)_{\text{reco}} m(D^0)| < 20 \text{ MeV}/c^2$ and $|\Delta m_{\text{reco}} \Delta m| < 2 \text{ MeV}/c^2$ $[\Delta m = m(D^{*0}) m(D^0)]$ when assuming kaon or pion mass hypotheses for identified leptons

$$D^0 o X^0 e^{\pm} \mu^{\mp}$$
 selection (2)

distinctive procedures

select events with oppositely charged electron and muon and

$$X_0^0 = \pi^0 \to \gamma \gamma$$

$$\blacktriangleright \hspace{0.1 in} X^{0}_{} = \eta \rightarrow \gamma \gamma, \hspace{0.1 in} X^{0} = \eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$\blacktriangleright X^{\circ} = \rho \to \pi^{+}\pi^{-}$$

$$\blacktriangleright X_{0}^{0} = \omega \rightarrow \pi^{+}\pi^{-}$$

$$\blacktriangleright X^{\circ} = K^{\circ}_{S} \to \pi^{\top} \pi$$

$$\blacktriangleright X^0 = \phi \to K^+ K^-$$

$$\blacktriangleright X^0 = \bar{K}^{*0} \to K^- \pi$$

• require $m(X^0)$ match within 3× reconstruction resolution, $E_{\gamma} > 25 \text{ MeV}$

- normalization modes: $D^0 \to \pi^- \pi^+ \pi^+ \pi^-$, $D^0 \to K^- \pi^+ \pi^+ \pi^-$, $D^0 \to K^- K^+ \pi^+ \pi^-$
- tighter PID
- multivariate discriminant (MVA) to reject $e^+e^- \rightarrow c\bar{c}$ background, tuned for each signal mode
 - inputs: D^0 candidate tracks momenta, shape variables of event, D^{*+} , rest-of-event, including photons
- rather than doing simultaneous fits to m(D⁰) and ∆m cut on m(D⁰) (within 3× reconstruction resolution) and do maximum-likelihood fit to ∆m only

Signal + background fits on Δm distribution

- ▶ $D^0 o \phi e^\pm \mu^\mp$ modeled with sum of two asymmetric-sigma Gaussian functions
- $D^0 o
 ho e^{\pm} \mu^{\mp}$ modeled with sum of two Cruijff functions
- all other signal modes modeled with single Cruijff function
- background modeled with ARGUS function

 $D^0 \rightarrow X^0 e^{\pm} \mu^{\mp}$

Decay mode $D^0 \rightarrow$	N _{sig} [candidates]	ϵ_{sig}	\mathcal{B} [×10 ⁻⁷]	B [×:	U.L. 90% 10 ^{—7} 1
	[]	L - 1	[]	BABAR	previous
$D^0 o \pi^0 e^\pm \mu^\mp$	$-0.3 \pm 2.0 \pm 0.9$	2.15 ± 0.03	$-0.6\pm4.8\pm2.3$	8.0	860
$D^0 o {\sf K}^0_{\sf S} e^\pm \mu^\mp$	$0.7\pm1.7\pm0.7$	$\textbf{3.01} \pm \textbf{0.04}$	$1.9\pm4.6\pm1.9$	8.6	500
$D^0 o ar{K^{*0}} e^\pm \mu^\mp$	$0.8\pm1.8\pm0.8$	2.31 ± 0.03	$2.8\pm6.1\pm2.6$	12.4	830
$D^0 o ho^0 e^\pm \mu^\mp$	$-0.7\pm1.7\pm0.4$	2.10 ± 0.03	$-1.8\pm4.4\pm1.0$	5.0	490
$D^0 o oldsymbol{\phi} e^\pm \mu^\mp$	$0.0\pm1.4\pm0.3$	$\textbf{3.43} \pm \textbf{0.04}$	$0.1\pm3.8\pm0.9$	5.1	340
$D^0 o \omega e^\pm \mu^\mp$	$0.4\pm2.3\pm0.5$	1.46 ± 0.03	$1.8\pm9.5\pm1.9$	17.1	1200
$D^0 o \eta e^\pm \mu^\mp$			$6.1\pm9.7\pm2.3$	22.5	1000
with $\eta ightarrow \gamma \gamma$	$1.6\pm2.3\pm0.5$	2.96 ± 0.04	$7.0\pm10.5\pm2.4$	24.0	
with $\eta o \pi^+\pi^-\pi^0$	$0.0\pm2.8\pm0.7$	2.46 ± 0.04	$0.4\pm25.8\pm6.0$	42.8	
(90% Confidence Level (CL) Upper Limits (UL) calculated using Feldman-Cousins method)					
<i>BABAR</i> , Phys. Rev. D 101 (2020) 11, 112003					

previous upper limits improved by order 100 \times

Rare and forbidden D^0 decays summary

Conclusions

$D^0 ightarrow K^- \pi^+ e^+ e^-$

• decay $D^0 o K^- \pi^+ e^+ e^-$ observed for the first time

- in the mass range $0.675 < m(e^+e^-) < 0.875 \text{ GeV}/c^2$
 - $\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-) = [4.0 \pm 0.5 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.1 \,(\text{norm})] \cdot 10^{-6}$
 - ▶ agrees with LHCb PLB 757 (2016) 558, $\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \pm 0.40) \cdot 10^{-6}$
- no evidence for violation of lepton universality
- no evidence for short-distance or New Physics contributions in the continuum range
 Phys. Rev. Lett. 122 (2019) 081802

$D^0 o h'^- h^+ \ell'^\pm \ell^\mp$, $D^0 o h'^- h^- \ell'^+ \ell^+$, $D^0 o X^0 e^\pm \mu^\mp$

 $\blacktriangleright \ D^0 \to h'^- h^+ \ell'^\pm \ell^\mp, \quad D^0 \to h'^- h^- \ell'^+ \ell^+: \quad 12 \text{ new } \mathcal{B}^{\text{U.L.}}_{90\%} \text{ in range } (1.0 - 30.6) \cdot 10^{-7}$

Phys. Rev. Lett. 124 (2020) 7, 071802

- $D^0 o X^0 e^{\pm} \mu^{\mp}$: 7 new $\mathcal{B}_{90\%}^{U.L.}$ in range $(5.0 23.0) \cdot 10^{-7}$
 - Phys. Rev. D 101 (2020) 11, 112003

order 100× more stringent upper limits than previous results

Thanks for your attention!

Backup Slides

Major systematics

