

Open-charm inputs to B physics and CKM tests

JIM LIBBY (IIT MADRAS)

Outline

- Open charm and CKM
 - QCD
 - CKM and lepton universality
- Data sets and double tag
- Recent results
 - $D \rightarrow \tau v$
 - DCS decay
 - strong phases in *D*→*Khh*
- Conclusions and outlook

 e^+e^- collisions at BEPCII between $\sqrt{s} = 2.0 - 4.7$ GeV BESIII detector - NIM A **614**, 345 (2010)

Electro Magnetic

Calorimeter

MDC

RPC:8

cos0=0.83 cos0=0.90

layers

RPC: 9

layers

SC

Solenoid>

Barrel ToF

Endcap

ToF

SC ~

Quadrupole

Why D meson decay? QCD

Take V_{cx} from fits to CKM assuming unitarity and measure f

Precise test of lattice QCD in charm and extrapolate to beauty

Similar to leptonic decay but now q (= four-momentum of W) dependent

Test QCD models of the form factor

Models of hadronic decay

- Isospin
- SU(3) flavour
- Different amplitudes T, P, A, E
- Long and short distance effects

Why D meson decay? CKM and LUV

FLIP IT! Take decay constant and form-factor predictions from QCD Measurements of V_{cx} to test the unitarity of the CKM picture

Model-independent determinations of γ and charm mixing/direct CPV requires strong phase measured with quantum correlated $\psi(3770) \rightarrow D^0 \overline{D}^0$

The "single vs. double-tag" techniques

Threshold production means that no other particles are produced along with the DD or DD* pair

Full event reconstruction "double tag" possible

✓ Advantages

- 1. absolute branching fractions
- **2.** full kinematic constraint to reconstruct v or neutron/ K_L^0), and
- 3. low backgrounds (i.e. amplitude analyses)

> Disadvantage

reduced reconstruction efficiency but still O(10%) c.f. FEI at Belle II

Single tag samples

 $M_{\rm BC} = \sqrt{E_{\rm beam}^2 - \left| \vec{\mathbf{p}}_D \right|^2}$

BEAUTY 2020

$D^+ \longrightarrow \tau^+ \nu$

Leptonic measurements: $D^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}) \nu$

- 6 tag-modes and single track on signal side
- Use missing mass

$$M_{\rm miss}^2 = (E_{\rm beam} - E_{\mu^+})^2 - (-\vec{p}_{D_{\rm tag}} - \vec{p}_{\mu})^2$$

• $\pi - \mu$ separation with EMC

Leptonic measurements: $D^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}) \nu$

- 6 tag-modes and single track on signal side
- Use missing mass

$$M_{\rm miss}^2 = (E_{\rm beam} - E_{\mu^+})^2 - (-\vec{p}_{D_{\rm tag}} - \vec{p}_{\mu})^2.$$

• $\pi - \mu$ separation with EMC

$$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau}) = \frac{N_{\rm DT}}{\mathcal{B}(\tau^+ \to \pi^+ \bar{\nu_{\tau}}) \cdot \sum_i N_{\rm tag}^i \cdot (\epsilon_{\rm DT}^i / \epsilon_{\rm tag}^i)}$$
$$= (1.20 \pm 0.24 [\text{stat.}] \pm 0.12 [\text{syst.}]) \times 10^{-3}$$

Pion-like in EMC

dominated by $D \rightarrow \mu \nu$ BF and bkg. parametrization

Leptonic measurements: $D^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}) \nu$

Leptonic measurements: $D^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}) \nu$

Aside: DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

Motivation and strategy

Test the naïve prediction that DCS decay should be suppressed by a factor tan⁴ $\theta_c \sim 2.9 \times 10^{-3}$ with respect to CF decay

Not so many measured – clean double-tag sample at BESIII allows previously unobserved decays to be searched for particularly multi-body decay including $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ and $K^+ \omega$

In addition $D \rightarrow PV SU(3)$ test Three high purity D⁻ tags inc. CF partner **1.15 million single tags** Then 2D fit to M_{BC} – signal vs. tag D

Results

$$B(D^+ \to K^+ \omega) = (5.7^{+2.5}_{-2.1} \pm 0.2) \times 10^{-5}$$

First observation with 3.3 σ significance – no CF analogue – agrees with SU(3) predictions that incorporate symmetry breaking - Q. Qin et al. Phys. Rev. D **89**, 054006 (2014)

$$B(D^{+} \rightarrow K^{+}\pi^{+}\pi^{-}\pi^{0}) = (1.13 \pm 0.08 \pm 0.03) \times 10^{-3}$$
$$= (6.28 \pm 0.52) \times \tan^{4} \theta_{C} \times B(D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{0})$$
Big isospin violating effect i.e. not seen in $D^{0} \rightarrow K^{+}\pi^{+}\pi^{-}\pi^{-}$ Maybe FSI?

Only way to learn more is more data and amplitude analysis

Quantum correlated decays

Quantum correlated decay: Why γ ?

NP could lead to 4° effects e.g. PRD 92, 033002 (2015)

Principal experimental goal in CKM physics in the next decade is to reduce uncertainty to 1^o

Measuring $\gamma: B \rightarrow DK$

Same final state for *D* and $\overline{D} \Rightarrow$ interference \Rightarrow **the possibility of DCPV**

Different types of D final states generally used

1. Self-conjugate multibody states: K_sh⁺h⁻ [Dalitz/BPGGSZ]

Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003); Bondar (unpublished)

2. CP-eigenstates [GLW]

Gronau & London, PLB 253, 483 (1991), Gronau, & Wyler, PLB 265, 172 (1991)

3. $K^+X^-(X^-=\pi^-, \pi^-\pi^0, \pi^-\pi^-\pi^+)$ - CF and DCS [ADS]

Atwood, Dunietz & Soni, PRD 63, 036005 (2001)

Many modes required to get good precision because of the small branching fractions involved but need to know the D dynamics too

Dalitz model-independent method

Binned fit proposed by Giri *et al.* [PRD 68 (2003) 054018] and developed by Bondar & Poluektov [EPJ C 55 (2008) 51; EPJ C47 (2006) 347] removes model dependence by relating events in bin i of Dalitz plot to *experimental observables*.

Loss in statistical sensitivity w.r.t. unbinned result...(here ~20%) but no model error!

Quantum correlated measurements

At the ψ (3770) neutral *D* pairs produced in quantum entangled state:

$$e^{+}e^{-} \rightarrow \psi'' \rightarrow \frac{1}{\sqrt{2}} \left[D^{0}\overline{D}^{0} - \overline{D}^{0}D^{0} \right]$$
$$e^{+}e^{-} \rightarrow \psi'' \rightarrow \frac{1}{\sqrt{2}} \left[D_{CP-}D_{CP+} - D_{CP+}D_{CP-} \right]$$
where $D_{CP\pm} = \frac{1}{\sqrt{2}} \left[D^{0} \pm \overline{D}^{0} \right]$

Reconstruct one D in decay of interest (eg. $K_s\pi\pi$), & other in CP eigenstate (eg. KK, $K_s\pi^0$...) then CP of the other is fixed.

$$CP \operatorname{tag} \qquad M_i^{\pm} = \frac{S_{\pm}}{2S_f} (K_i + K_{\overline{\imath}} \pm 2c_i \sqrt{K_i K_{\overline{\imath}}}),$$
$$K_s \pi \pi \operatorname{tag} \qquad M_{i,j} = \frac{N_{D^0, \overline{D}^0}}{2S_f^2} (K_i K_{\overline{\jmath}} + K_{\overline{\imath}} K_j - 2\sqrt{K_i K_{\overline{\jmath}} K_{\overline{\imath}} K_j} (c_i c_j + s_i s_j))$$

Yields

PRL **124**, 241802 (2020) PRD **101**, 112002(2020)

2.93 fb⁻¹ of data compared with 0.82 fb⁻¹ for the only previous measurement by CLEO - PRD **82**, 112006 (2010)

New final states: CP even $\pi^+\pi^-\pi^0$ and $K_S^0(\pi^0\pi^0)\pi^+\pi^$ where one π^0 is not reconstructed

	$K_{c}^{0}\pi^{+}\pi^{-}$	$K_{I}^{0}\pi^{+}\pi^{-}$
CP-even tags	$N_{\rm DT}$	$N_{\rm DT}^{L}$
K^+K^-	443 ± 22	1289 ± 41
$\pi^+\pi^-$	184 ± 14	531 ± 28
$K^0_S \pi^0 \pi^0$	198 ± 16	612 ± 35
$\pi^+\pi^-\pi^0$	790 ± 31	2571 ± 74
$K_L^0 \pi^0$	913 ± 41	
CP-odd tags		
$K_{S}^{0}\pi^{0}$	643 ± 26	861 ± 46
$K^0_S \eta_{\gamma\gamma}$	89 ± 10	105 ± 15
$K^{0}_{S}\eta_{\pi^{+}\pi^{-}\pi^{0}}$	23 ± 5	40 ± 9
$K_S^0 \omega$	245 ± 17	321 ± 25
$K^0_S \eta'_{\pi^+\pi^-\eta}$	24 ± 6	38 ± 8
$K^0_S \eta'_{\gamma \pi^+ \pi^-}$	81 ± 10	120 ± 14
$K_{L}^{0}\pi^{0}\pi^{0}$	620 ± 32	
Mixed-CP tags		
$K^0_S \pi^+ \pi^-$	899 ± 31	3438 ± 72
$K_S^0 \pi^+ \pi_{ m miss}^-$	224 ± 17	
$K_S^0(\pi^0\pi_{\rm miss}^0)\pi^+\pi^-$	710 ± 34	

Results

PRL **124**, 241802 (2020) PRD **101**, 112002(2020)

Three different binning schemes

Fit binned quantum-correlated yields to extract c_i and s_i

	Ci	Si
1	$-0.034 \pm 0.052 \pm 0.017$	$-0.899 \pm 0.094 \pm 0.030$
2	$0.839 \pm 0.062 \pm 0.037$	$-0.272 \pm 0.166 \pm 0.031$
3	$0.140 \pm 0.064 \pm 0.028$	$-0.674 \pm 0.172 \pm 0.038$
4	$-0.904 \pm 0.021 \pm 0.009$	$-0.065 \pm 0.062 \pm 0.006$
5	$-0.300 \pm 0.042 \pm 0.013$	$1.047 \pm 0.055 \pm 0.019$
5	$0.303 \pm 0.088 \pm 0.027$	$0.884 \pm 0.191 \pm 0.043$
7	$0.927 \pm 0.016 \pm 0.008$	$0.228 \pm 0.066 \pm 0.015$
8	$0.771 \pm 0.032 \pm 0.015$	$-0.316 \pm 0.123 \pm 0.021$

Statistically dominated

Systematics from assumptions of including KOLpipi and flavour tag

LHCb-CONF-2020-01 and A. Poluektov talk tomorrow

Impact on γ

Used in the most precise single measurement of $\boldsymbol{\gamma}$ to date

Systematic from the c_i and s_i measurements approximately ${\sim}1^{\circ}$

-We have also measured $D^0 \rightarrow K_S^0 K^+ K^$ strong phases:

- 12% more data in the γ measurement

- arXiv:2007.07959 [hep-ex] (acc. PRD)

Conclusion and outlook

Presented highlights from BESIII related to CKM in last year:

- Observation of $D \rightarrow \tau v$, surprisingly large rate for DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ and new generation of c_i and s_i measurements that result in γ systematic of $\sim 1^\circ$

Many other results in open charm

- 12 other papers submitted since Beauty 2019 (see backup)
- also many results in spectroscopy see Zhentian Sun tomorrow

Future Physics Programme at BESIII - Chin. Phys. C 44, 040001 (2020)

- 20 fb⁻¹ at ψ (3770) planned during 2021-2022 running
- more precise CKM, LQCD and LUV tests and strong phase measurements
- hadron branching fraction and amplitude analysis particularly multibody

Hereiter in the second seco

Backup

List of other results – since Beauty 2019

- 1. Search for rare decay $D_s^+ \rightarrow p\bar{p}e^+\nu PRD$ **100**, 112008 (2019)
- 2. Measurements of BFs for $D \rightarrow \eta \pi \pi$ PRD **101**, 052009 (2020)
- 3. Measurements of Branching Fractions for $D^+ \rightarrow \omega \mu^+ \nu$ Decays PRD **101**, 072005(2020)
- 4. First measurement of $D^+ \rightarrow \eta \mu^+ \nu$ PRL **124**, 231801
- 5. Measurements of the absolute branching fractions of the exclusive $D^0 \rightarrow \eta X$ decays PRL **124**, 241803(2020)
- 6. Study of $D_s^+ \to PP JHEP$ **2020**, 146 (2020)
- 7. Analysis of the decay $D^0 \rightarrow K_S^0 K^+ K^-$ submitted to PRD arXiv:2006.02800
- 8. Measurements of the Cabibbo-suppressed $D^0 \rightarrow \eta/\omega\pi\pi$ decays PRD **102** 052003 (2020)
- 9. Searches for $D \rightarrow b_1(1235)e^+\nu$ submitted to PRD arXiv:2008.05754
- 10. Measurements of Branching Fractions for $D^0 \rightarrow \pi \pi K K$ Decays submitted to PRD arXiv:2007.10563
- 11. Measurement of absolute branching fraction of the inclusive decay $\Lambda_c \rightarrow K_S^0 + X$ accepted by EPJC arXiv:2005.11211