KOTO Status and Prospects Koji Shiomi for the KOTO collaboration (KEK) **BEAUTY 2020** 2020/9/23

Physics on $K_L \to \pi^0 \nu \overline{\nu}$

К٥

d

W±

 Π^0

- Standard Model : FCNC
 - CP-violating:
 - $K_L \propto K^0 \overline{K^0}$ $\mathscr{A}_{K_L \to \pi^0 \nu \nu} \propto \mathscr{A}_{s \to d} (\mathscr{A}_{s \to d})^* \propto \mathrm{Im}\mathscr{A}_{s \to d}$
 - Rare:

$$BR(SM) = 3 \times 10^{-11} \propto \left| V_{ts} V_{td}^* \right|^2$$

- Accurate:
 - theoretical uncertainty < 2%
- Good probe for New Physics search

Experimental search for $K_L \rightarrow \pi^0 \nu \nu$

eriment

ØGeV Main Ring.

Tokai, Ibaraki, Japan

Collaboration meeting with Zoom(July 2020)

Experimental principle

sl calorimeter + Brine veter tenctor

History of data taking

Analysis status of 2016-2018 data

-Determined selection criteria and opened signal box at Aug. 2019. -Observed 4 candidate events inside the signal box -Reported @ Kaon2019

Properties of candidate events waveform of veto detector

Updated background table (ICHEP2020)

	source	ary	#BG (U.L. at 90% C.L.)	#BG (U.L. at 68% C.L.)	~	source	ninary	#BG (U.L. at 90% C.L.)	#BG (U.L. at 68% C.L.)	
ore	KL	K _L →2π ⁰	<0.09	<0.05	X	K±	K±→π ⁰ π±	0.03±0.03	0.03±0.03	
		K∟→π+π•π⁰	<0.02	<0.01	Vew		K±→π⁰e±v	0.30±0.09	0.30±0.09	
		K_L →3 $π^0$ (overlapped pulse)	0.01±0.01	0.01±0.01			K±→π ⁰ μ±v	<0.07	<0.04	
		Ke3 (overlapped pulse)	<0.09	<0.05		Neutron	Upstream π ⁰	0.001±0.001	0.001±0.001	
		K∟→2γ	0.001±0.001	0.001±0.001			Hadron cluster	0.02 ±0.00	0.02 ±0.00	
New		Ke3 (π^0 produced)	<0.04	<0.02			CV-π ⁰	<0.10	<0.05	
		Ke3 (π⁺ beta decay)	<0.01	<0.01			CV-ŋ	0.03±0.01	0.03±0.01	
		radiative Ke3	<0.046	<0.023		Total	central value	0.39(±0.10)	0.39(±0.10)	
		Ke4	<0.04	<0.02						
		K∟→eeγ	<0.09	<0.05				K [±] Branching ratio		
		K∟→π⁺π⁻	<0.03	<0.02				K±→π ⁰ π±	20.7%	
		K∟→2γ (core-like)	<0.11	<0.06				K [±] →π⁰e [±] v	5.1%	
Ļ		$K_L \rightarrow 2\gamma$ (halo)	<0.19	<0.10				K±→π ⁰ μ±v	3.4%	

Charged Kaon Backgrounds

11

K+ generated in the beam line

 $K^+/K_L \sim 1.3 { imes} 10^{-6}$

Based on GEANT3

K± flux measurement

K±

Installed a new detector

2020 May-Jun Run

- -Took data for K+ flux measurement with a dedicated trigger
- -Checked the performance and
- effect of upstream charged veto counter $\frac{\ddot{\theta}}{2}$

Measured K[±] flux

- The distribution of selected events are well reproduced by MC simulation of K± decays (K+ distribution is scaled by best fit)
- K[±] flux ratio:

$$R_{K^{\pm}} = F_{K^{\pm}}/F_{K_L}$$

Comparison between data and MC $R_{K^{\pm}}^{meas.}/R_{K^{\pm}}^{MC} = 3.0 \pm 0.1$

Measured K± flux is 3 times larger than MC.

Updates of BG table with K[±] measurement

arl							orl			
	source	ninary	#BG (90% C.L.)	#BG (68% C.L.)	5	source	ninary	#BG (90% C.L.)	#BG (68% C.L.)	
Y	KL	$K_L \rightarrow 2\pi^0$	<0.09	<0.05	4	K+/-	$K^{\pm} \rightarrow \pi^0 \pi^{\pm}$	0.09±0.09	0.09±0.09	
		$K_L \to \pi^+ \pi^- \pi^0$	<0.02	<0.01			$K^{\pm} \to \pi^0 e^{\pm} \nu$	0.90±0.27	0.90±0.27	New
		$K_L \rightarrow 3\pi^0$ (overlapped pulse)	0.01±0.01	0.01±0.01			$K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$	<0.21	<0.12	
		K - 0				Neutron	Upstream π ⁰	0.001 ± 0.001	0.001 ± 0.001	
		Ke3 (overlapped pulse)	<0.09	<0.05			Hadron cluster	0.02 ± 0.00	0.02 ± 0.00	
		$K_L \rightarrow 2\gamma$	0.001±0.001	0.001±0.001			CV-pi0	<0.10	<0.05	
		Ke3 (π^0 production)	<0.04	<0.02			CV-eta	0.03±0.01	0.03 ± 0.01	
		Ke3 (π^+ beta decay)	<0.01	<0.01	(Total	central value	1.05±0.28	1.05±0.28	New
		radiative Ke3	<0.046	<0.023						
		Ke4	<0.04	<0.02						
		$K_L \rightarrow e e \gamma$	<0.09	<0.05						
		$K_L \rightarrow \pi^+ \pi^-$	<0.03	<0.02						
		$K_L \rightarrow 2\gamma$ (core-like)	<0.11	<0.06						
		$K_L \rightarrow 2\gamma$ (halo-K)	<0.19	<0.10						

-BG table was updated based on the result of the K[±] flux

-Tentative total BG estimation: 1.05±0.28

 $\rightarrow N_{obs}(3)$ is not significantly larger than total #BG.

We will finalize the analysis and report the results in this autumn

To suppress K±BG

Prototype module has 30% inefficiency due to

1Limited coverage.

2 Insensitive region in the fiber.

③Noise fluctuation.

MeV

->Developing a new upstream charged veto counter

Prospects for future runs

Have 2 month beam time before 2021 long shutdown.

-> We can reach a sensitivity of \sim 3 x 10⁻¹⁰ by suppressing K[±] BG.

After long shutdown,

->Beam power will increase up to 100 kW. (Current power:50kW)

->Slow-extraction spill structure would be better.

Summary

The KOTO experiment studies the KL $\rightarrow \pi^0 \nu \nu$ decay

3 events were observed in 2016-2018 data.

•

•

- Found a possibility of K± background contamination.
- Measured K[±] flux was 3 times larger than the MC expectation.
 - Updated BG level is 1.05 ± 0.25 and not negligible compared with N_{obs}(=3)

Developing a new detector to suppress $K^{\pm}BG$ and Continue to take physics data to reach the sensitivity of O(10⁻¹¹).

Backup

Property of Event #3

This event remained due to a mistake...

Event in Run74

- CV hits in neighboring two strips (each less than the threshold)
 - HINEMOS (inner scintillator of NCC) had a hit but the timing was mis-measured.

The on-time hit was lost due to a wrong parameter for peak selection in this run period.

(The large deviation existed in this detector and in this run period.)

Study with loose cuts

Study with loose cuts to enhance overlapped pulse events

Study with loose cuts

The other two events also had similar overlapped pulse \rightarrow

The discriminator could select overlapped pulse events and MC reproducibility was good

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ decay ⁷

 $\square \text{ Measure } K^{\pm} \rightarrow \pi^{\pm} \pi^0 \text{ decay (BR=20\%)}$

Trigger three cluster events in the calorimeter

Reconstruction

• For two neutral hits, impose $M_{\gamma\gamma} = M_{\pi^0} \rightarrow \text{define } K^{\pm}$ decay vertex

- igoplus For a charged hit, from the hit position and assumption of Pt balance of π^\pm and π^0
 - \rightarrow calculate the magnitude of the momentum
 - → reconstruct four vectors of all the particles

• Calculate $M_{\pi\pi^0}$

Reconstruction of $K^+ \rightarrow \pi^+ \pi^0$

- 1. Repeat following procedure 2-6 for all the combinations
- 2. Reconstruct a π^0 from two γ' s
 - ✓ Determine Z position of vertex assuming a π^0 decays on z-axis.
 - ✓ Polar angles of three momenta are determined.
 - ✓ Energies of γ clusters are reliable, so two four-vectors p_{γ_1} and p_{γ_2} are also determined
- 3. Calculate p_t of π^0 (\leftarrow magnitude)
- 4. Assuming the transverse momentum of K^+ is zero, momentum conservation in the transverse plane gives

$$|\vec{p}_{\pi}| = \frac{p_t^n}{\sin\theta_{\pi}} \rightarrow p_{\pi}$$
 is determined

- 5. Calculate *shape*- χ^2 of three clusters.
- 6. Sort all the combinations with respect to smallness of $\chi^2_{\gamma_1} + \chi^2_{\gamma_2}$. Choose the smallest.
- 7. For momenta of all the particles are now on ready
- 8. Calculate the invariant mass of K^+ as:

$$M_{\pi^{0}\pi} = \sqrt{(p_{\gamma_{1}} + p_{\gamma_{2}} + p_{\pi})^{2}}$$

KOTO CSI calorimeter cannot directly measure momentum of π^+ , but can measure hit position.

shape- χ^2 represents how the cluster's 2D energy deposit is likely to be that of γ . If a cluster is made by π^+ , this becomes large.

Evaluation of K^+ BG on $K_L \to \pi^0 \nu \bar{\nu}$ analysis

■ Purpose of this study → Evaluation of the K^+ BG on $K_L \rightarrow \pi^0 \nu \bar{\nu}$ analysis by data-driven method

\Box Collection of K^+ control sample

- Sweeping magnet (D1 magnet) in the beamline
- Turned off D1 magnet to increase K[±] yield by a factor of 4000

- ✓ 5 hours data
- ✓ Measure K^+ yield by $K^+ \to \pi^+ \pi^0$ decay
- \rightarrow Corresponds to 2.5 \times 10¹⁰ K⁺

 $P_{K^{\pm}}$ distribution obtained by $K^+ \rightarrow \pi^+ \pi^0$ analysis

The # of events in the blind region is consistent between data and MC

Special run to collect neutron samples

New cuts against Hadron-cluster BGs

• Deep learning

Pulse shape discrimination
by Fourier transformation

x1.8 improvement

x2 improvement

Detector upgrade in 2019

