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This talk

I CP violation and Flavour structure in the Kaon
System

I εK

I ε′/ε
I K → πν̄ν
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CP & Rare Kaon Decays: CKM Structure

3

s d
W+

Z,     γ, g 

t, c, u

Using the GIM mechanism, we  
can eliminate either Vcs* Vcd  or
Vus* Vud → - Vcs* Vcd - Vts* Vtd

Z-Penguin and Boxes (high virtuality):
power expansion in: Ac - Au ∝ 0 + O(mc2/MW2)

γ/g-Penguin (expand in mom.): Ac - Au ∝ O(Log(mc2/mu2))

ImV ⇤
tsVtd = �ImV ⇤

csVcd = O(�5) ImV ⇤
usVud = 0

ReV ⇤
usVud = �ReV ⇤

csVcd = O(�1) ReV ⇤
tsVtd = O(�5)

s

c, u

d

c, u

W±s

d

u

u

I CP Violation in Decay: ImAK/ReAK = λ4
· loop

I K → πν̄ν (from Z & Boxes): Clean and suppressed
I Lattice input needed for all other decays
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Meson-antimeson mixing

Restricting to {|K 0
〉, |K

0
〉}, the time evolution is given by

Ĥ =

(
H11 H12

H21 H11

)
=

〈K 0
|T |K 0

〉 〈K 0
|T |K

0
〉

〈K
0
|T |K 0

〉 〈K
0
|T |K

0
〉

 = M̂ −
i
2

Γ̂

I QCD→ H11 = H22

I weak ∆F = 2 interactions→ H12 and H21.
Eigenvectors KS = pK 0 + K̄ 0 and KS = pK 0

− K̄ 0.

Define: λI =
q
p

ĀI

AI
for (isospin-)final state.

4 / 26



CP violation in K → ππ

I Experimental definition using ηij =
〈πiπj

|KL〉

〈πiπj |KS〉

εK = (2η+− + η00)/3 , ε′ = (η+− − η00)/3

I εK theory expression εK '
〈(ππ)I=0|KL〉

〈(ππ)I=0|KS〉
=

e iφε sinφε
1
2

arg

(
−M12

Γ12

)
= e iφε sinφε

(
Im(M12)Dis

∆MK
+ ξ

)
〈K 0
|H |∆S |=2

|K̄ 0
〉 → Im(M12)Dis ,

Im〈(ππ)I=0|K 0
〉

Re〈(ππ)I=0|K 0〉
→ ξ φε ≡ arctan

∆MK

∆ΓK/2

I ε′ theory expression ε′ '
1
6

(λ00 − λ+−)
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εK
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Im(M12)

I We can factorise perturbatively calculated
I short distance contributions at µt = mt ,
I from long distance effects calculated on Lattice

〈Heff〉 = 〈Q |∆S=2|
〉(µhad) U(µhad, µc) U(µc , µW ) C(µW )

I factorising U(µhad, µc) = u−1(µhad)u(µc) we write:

I
2
3

f2
K M2

K B̂K = 〈K̄ 0
|Q |∆S=2|

|K 0
〉u−1(µhad)

I ηij S(xi , xj) = u(µc)U(µc , µW )C(µW )
is the short distance contribution

I QS2 = (sLγµdL ) ⊗ (sLγ
µdL )
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Kaon Mixing: CKM Structure

u,c,t∑

ui,uj
λui

λuj
×

s d

sd

ujui

W±

W±

We define λi = VidV ∗is
I Using λu = −λc − λt we have

A = λ2
t (Att − 2Atu + Auu) +

2λtλc(Atc − Atu + Auu − Acu)

λ2
c(Auu − 2Acu + Acc)

I One could eliminate λc = −λu − λt .
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Kaon Mixing: CKM Structure II

u,c,t∑

ui,uj
λui

λuj
×

s d

sd

ujui

W±

W±

Im Re O

λ2
t ~ λ10 ~ λ10 m2

t /M2
W

λc λt ~ λ6 ~ λ6 m2
c/M2

W ln(mt/mc)
λ2

c ~ λ6 ~ λ2 m2
c/M2

W
λu λt ~ λ6 ~ λ6 m2

c/M2
W ln(mt/mc)

λ2
u 0 ~ λ2 m2

c/M2
W

Where λi = VidV ∗is, λ ≡ |Vus | ∼ 0.2 and we eliminated
either: λu = −λc − λt or λc = −λu − λt .
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∆S = 2 Hamiltonian - Phase (In)Dependence
I Recall εK ∝ arg(−M12/Γ12)

I Trick: pull out λ∗u and (λ∗u)2 from H∆S=1 and H∆S=2:
I Rephaseing invariant: λiλ

∗

j = VidV ∗isV ∗jdVjs

I Γ12 ' A ∗0Ā0 where A0 = 〈(ππ)I=0|K 0
〉

H
∆S=2
f=3 =

G2
FM2

W

4π2(λ∗u)2 QS2

{
f1C1(µ) + iJ [f2 C2(µ) + f3 C3(µ)]

}
+ h.c.

I J = Im(VusVcbV ∗ubV ∗cs), f1, f2 and f3 are rephasing
invariant

I Real part f1 = |λu|
4 is unique

I Splitting of f2 and f3 not, but expect good
convergence for C2 and C3.
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Traditional Form
Traditionally the effective Hamiltonian is written as:

H
∆=2
f=3 =

G2
FM2

W

4π2

[
λ2

cCcc
S2(µ)+λ2

t C tt
S2(µ)+λcλtCct

S2(µ)
]
QS2+h.c.

where f2 = 2Re(λtλ
∗

u), f3 = |λu|
2 and, using PDG

convention and CKM unitarity,

Ccc
S2 ≡ C1, Cct

S2 ≡ 2C1 − C3, C tt
S2 ≡ C1 + C2 − C3

I C1 ← Auu − 2Acu + Acc has bad short distance
behaviour

I C1 determines ∆MK via ReM12

I But C1 contributes to ImM12 and hence εK
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Residual scale dependence
ηct @ NNLO – Scale Dependence
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Joachim Brod (U Cincinnati) Kaon Mixing 23 / 54

I QCD corrections to Cct
S2 → ηct = 0.497(47)

I QCD corrections to Ccc
S2 → ηcc = 1.87(76)
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ImM12 without ∆MK pollution
I Using CKM unitarity and the PDG convention we can

also write (as used in Lattice [Christ et.al.]):

H
∆=2
f=3 =

G2
FM2

W

4π2

[
λ2

uCuu
S2(µ)+λ2

t C tt
S2(µ)+λuλtCut

S2(µ)
]
QS2+h.c.

I Now real ReM12 and ImM12 are disentangled
Cuu

S2 ≡ C1, C tt
S2 ≡ C2, Cut

S2 ≡ C3

C3 ← (Atu − Atc + Acc − Acu)←

← (Auu − 2Acu + Acc) − (Atc − Atu + Auu − Acu)

I Extract anomalous dimensions and matching from
old calculation and incorporate matching from ηcc
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Residual scale dependenceηut @ NNLO – Scale Dependence

1.0 1.2 1.4 1.6 1.8 2.0
µc [GeV]

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

η u
t

Residual µc dependence

LL

NLL

NNLL

Joachim Brod (U Cincinnati) Kaon Mixing 38 / 5414 / 26



The top-quark: good convergenceηtt @ NLO – Scale Dependence
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Joachim Brod (U Cincinnati) Kaon Mixing 41 / 54Can be improved with NNLO calculation
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SM prediction using PDG input

|εK | = κεCεB̂K |Vcb |
2λ2η̄ ×

[
|Vcb |

2(1 − ρ̄)ηtt(xt) − ηut(xc , xt)
]

|εK | – Result and Error Budget

|εK | ∝ κεBK |Vcb|2sin β
(
|Vcb|2cos βηttS(xt)+ηctS(xc , xt)−ηccS(xc)

)

Ctt (4%)
Cut (2%)

Vcb

35 %

sin 2β

14 %

param. 14 %

ξs

13 %

κε

11 %

BK

7 %

B̂K = 0.7625(97)
[FLAG 2019, 1902.08191]

|εSM
K | = 2.16(18) × 10−3

|εexp
K | = 2.228(11) × 10−3

Joachim Brod (U Cincinnati) Kaon Mixing 44 / 54
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CKMfitter 2019 update
Incorporating new formalism shows reduced uncertainty,
but ρ̄ and η̄ not the (only) dominant CKM factors.
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ε′/ε
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ε′/ε: Isospin limit and breaking
ε′ ' (λ00 − λ+−) /6 in terms of charged pion final states.

AI = h(⇡⇡)I |He↵ |KiCurrent theory gives us only:

Normalise to K+ decay (ω+, a) and εK ,
expand in A2/A0 and CP violation:

a0, a2 & a2+ from experiment
[Cirigliano,  et.al. `11]

 a0 & a2: isospin amplitudes 
for isospin conservation

h⇡0⇡0|K0i = a0e
i�0 + a2e

i�2/
p

2

h⇡+⇡�|K0i = a0e
i�0 � a2e

i�2
p

2

h⇡+⇡0|K+i = 3a+
2 ei�+

2 /2

Re

✓
✏0

✏

◆
' ✏0

✏
= � !+p

2 |✏K |


ImA0

ReA0
(1 � ⌦̂e↵) � 1

a

ImA2

ReA2

�

[Buras, Gerard 2005.08976]
Analysis of isospin breaking,  

finds 40% reduction wrt RBC-QCD

Adjusted to keep electroweak 
penguins in Im A0 [Cirigliano,  et.al. `11]
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Effective Hamiltonian for Nf = 3

He↵ =
GFp

2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV

⇤
ts

VudV ⇤
us

Q1,2/± = (s̄iuj)V �A (ūkdl)V �A

Q3,...,6 = (s̄idj)V �A

X

q=u,d,s

(q̄kql)V ±A

Q7,...,10 = (s̄idj)V �A

X

q=u,d,s

eq(q̄kql)V ±A

current-current
QCD &

electroweak
penguins

C1-C6 @ NNLO [1611.08276] ; C7-C10 Partial NNLO [hep-ph/9911250]

I Fierz identities: Q4 = Q3 + Q2 −Q1, Q9 = 3/2Q1 −Q3

and Q10 = Q2 + Q1 −Q3 plus Isospin: 〈Q3/4〉2 = 0
→ Some matrix elements cancel in ImA0/ReA0 and
ImA2/ReA2. [1507.06345]
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Lattice calculations

I RBC UKQCD calculation [1502.00263] of A2

I RBC UKQCD calculation [2004.09440] of A0

Re(ε′/ε)RBCUKQCD = 21.7(2.6)(6.2)(5.0) · 10−4

Uncertainties are statistical, systematic, and iso-spin
breaking

Re(ε′/ε)experiment = 16.6(2.3) · 10−4
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K → π ν̄ ν
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K → πν̄ν at MWK+ → !+ ῡ υ at MW

W

s

d

sν

ν ν

Z

u, c, ts dd

ν ν ν

Z

W W

W We, µ, τ
u, c, t u, c, t

u, c, t

11

�

i

V�
isVidF(xi) = V�

tsVtd(F(xt) ⌅ F(xu)) + V�
csVcd(F(xc) ⌅ F(xu))

Q⇥ = (s̄L�µdL)(⇥̄L�
µ⇥L)

�5 m2
t

M2
W

Quadratic GIM:
Matching (NLO +EW): 

�
m2

c

M2
W

ln
MW

mc

Operator
Mixing (RGE)

λ
Λ2

QCD
M2

W

xi =
m2

i

M2
W

NNLO involves 3-loop massive tadpoles. Compare result with 
similar calculation of B → $+ $- [Cerda-Sevilla, Gorbahn, Leak]

Matrix element from Kl3 decays (Isospin symmetry: K+→!0 e+ υ)
[Mescia, Smith]

ChiPT & 
Lattice

I Below the charm: Only Qν, ME from Kl3
I semi-leptonic (s̄γµuL )(ν̄γµ`L ) operator: χ PT gives

small contribution (10% of charm contribution)
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Expressions for K → πν̄νExpressions for K → ! ῡ υ 

12

2 Basic formulae 4

• computation of complete NLO electroweak corrections to the top quark con-
tribution to K+ ! ⇡+⌫⌫̄ and KL ! ⇡0⌫⌫̄ in [8];

• reduction of uncertainties due to mt(mt), mc(mc) and ↵s(MZ), with the last
two relevant in particular for the charm contribution to K+ ! ⇡+⌫⌫̄.

While incorporating these advances in our presentation we will also include

• NLO QCD corrections to the top quark contributions [1–3] and NNLO QCD
corrections to the charm contribution [4–6];

• isospin breaking e↵ects and non-perturbative e↵ects [10, 11].

2.1 K+ ! ⇡+⌫⌫̄

The branching ratio for K+ ! ⇡+⌫⌫̄ in the SM is dominated by Z0 penguin di-
agrams, with a significant contribution from box diagrams. Summing over three
neutrino flavours, it can be written as follows [3, 11]

B(K+ ! ⇡+⌫⌫̄) = +(1 + �EM)·
"✓

Im�t

�5
X(xt)

◆2

+

✓
Re�c

�
Pc(X) +

Re�t

�5
X(xt)

◆2
#

, (2.1)

with

+ = (5.173 ± 0.025) · 10�11


�

0.225

�8

, �EM = �0.003. (2.2)

Here xt = m2
t /M

2
W , � = |Vus|, �i = V ⇤

isVid are the CKM factors discussed below,
and + summarises the remaining factors, in particular the relevant hadronic matrix
elements that can be extracted from leading semi-leptonic decays of K+, KL and KS

mesons [11]. �EM describes the electromagnetic radiative correction from photon
exchanges. X(mt) and Pc(X) are the loop functions for the top and charm quark
contributions, which are discussed below. An explicit derivation of (2.1) can be
found in [33]. The apparent large sensitivity of B(K+ ! ⇡+⌫⌫̄) to � is spurious as
Pc(X) ⇠ ��4 (see (2.6)) and the dependence on � in (2.2) cancels the one in (2.1)
to a large extent. Therefore when changing � it is essential to keep track of all the
� dependence.

In obtaining the numerical values in (2.2) [11], the MS scheme with

sin2 ✓w(MZ) = 0.23116, ↵(MZ) =
1

127.925
, (2.3)

has been used. As their errors are below 0.1% these can currently be neglected.
Note, however, that although the prefactor of the e↵ective Hamiltonian, ↵/ sin2 ✓w,
is precisely known in a particular renormalisation scheme (MS in this case) it re-
mains a scheme dependent quantity, with the scheme dependence only removed by
considering higher order electroweak e↵ects in K ! ⇡⌫⌫̄. An analysis of such ef-
fects in the large mt limit [9] demonstrated that in principle this scheme dependence
could introduce a ±5% correction in the K ! ⇡⌫⌫̄ branching ratios, and that with
the MS definition of sin2 ✓W these higher order electroweak corrections are found

2 Basic formulae 6

where we have added the errors in quadratures. We will use this value in our
numerical analysis. In obtaining the error in (2.9) we kept � fixed at its central
value, as its error is very small and the strong dependence on � in P SD

c (X) is
canceled by other factors in the formula for the branching ratio as discussed above.

2.2 KL ! ⇡0⌫⌫̄

The branching ratio for KL ! ⇡0⌫⌫̄ in the SM is fully dominated by the diagrams
with internal top exchanges, with the charm contribution well below 1%. It can be
written then as follows [39,40]

B(KL ! ⇡0⌫⌫̄) = L ·
✓

Im�t

�5
X(xt)

◆2

, (2.10)

where [11]

L = (2.231 ± 0.013) · 10�10


�

0.225

�8

. (2.11)

We have summed over three neutrino flavours. An explicit derivation of (2.10) can
be found in [33]. Due to the absence of Pc(X) in (2.10), the theoretical uncertainties
in B(KL ! ⇡0⌫⌫̄) are due only to X(xt) and amount to about 1% at the level of
the branching ratio. The main uncertainty then comes from Im�t, which is by far
dominant with respect to the other parametric uncertainties due to L and mt, with
the latter present in X(xt).

2.3 Experimental prospects

Experimentally we have [41]

B(K+ ! ⇡+⌫⌫̄)exp = (17.3+11.5
�10.5) · 10�11 , (2.12)

and the 90% C.L. upper bound [42]

B(KL ! ⇡0⌫⌫̄)exp  2.6 · 10�8 . (2.13)

The prospects for improved measurements of B(K+ ! ⇡+⌫⌫̄) are very good.
One should stress that already a measurement of this branching ratio with an accu-
racy of 10% will give us a very important insight into the physics at short distance
scales. Indeed the NA62 experiment at CERN [20, 21] is aiming to reach this pre-
cision, and it is expected to accumulate 100 SM events with a good signal over
background figure by 2018. In order to achieve a 5% measurement of the branching
ratio, which will be the next goal of NA62, more time is needed. The planned new
experiment at Fermilab (ORKA) could in principle reach the accuracy of 5% [43].4

Concerning KL ! ⇡0⌫⌫̄, the KOTO experiment at J-PARC aims in the first
step in measuring B(KL ! ⇡0⌫⌫̄) at SM sensitivity and should provide interesting
results around 2020 on this branching ratio [15,22]. There are also plans to measure
this decay at CERN and one should hope that Fermilab will contribute to these

4Unfortunately the US P5 committee did not recommend moving ahead with ORKA and it appears
that the precision on B(K+ ! ⇡+⌫⌫̄) will depend in the coming ten years entirely on the progress made
by NA62.

New Physics without extra light degrees of freedom  
can be absorbed into  
X(xt) -> X(xt) + XNP

I Imλt = ηA2λ5, Reλt = λ2
−2
2 A2λ2(1 − ρ̄), Reλc = λλ

2
−2
2

I κ+, κL ,∆EM strong and em iso-spin breaking
[0705.2025]

I Pc = Ppert.
c + δ Pc,u = 0.372(15) + 0.04(2)← (NNLO +

EW) [ph/0603079] [0805.4119] + χ PT & Lattice
[ph/0503107] [1806.11520]
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Uncertainty Analysis using UTfit values

B+· 1011 Central: 8.510 BL · 1011 Central: 2.858
Error: -0.543 0.555 Error: -0.256 0.264
A -0.34 0.352 A -0.162 0.17
δPc,u -0.246 0.250 η -0.162 0.167
Xt -0.236 0.240 Xt -0.113 0.115
ρ -0.161 0.162 κl -0.017 0.002
Pc -0.185 0.187 λ -0.001 0.00
κ+ -0.041 0.041
η -0.037 0.039
λ -0.003 0.003

I Precise theory prediction, suppression in standard
model and current measurement at NA62 & KOTO→
see talks in this session

CKM input: A = 0.826(12), ρ̄ = 0.148(13), η̄ = 0.348(10)
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Conclusions

I Perturabtion theory allows for precise theory
prediction of K → π ν̄ ν decay modes and, with
remarkable progress from Lattice, in CP violting
hadronic decays.

I Observables are highly suppressed in the standard
model and their measurement constraints models of
new physics.

I We can constrain high energy physics paramters→
next talk
I See also talk by Ulserik Moldanazarova in the DESY

theory forum today on renormalised results for the
∆F = 1 effective Hamiltonian in generic extensions of
the Standard Model.
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