CP Violation and Rare Decays in the Kaon System

Martin Gorbahn (University of Liverpool) Based on 1911.06822 work with J. Brod, E. Stamou

BEAUTY 2020 Kavli, IPMU 2020 September 23

This talk

- CP violation and Flavour structure in the Kaon System
- ► €K
- ► \(\epsilon' \) \(\epsilon \)
- $\blacktriangleright \ K \to \pi \bar{\nu} \nu$

CP & Rare Kaon Decays: CKM Structure

Using the GIM mechanism, we Using the GIM mechanism, we s can eliminate either $V_{cs}^* V_{cd}$ or $V_{us}^* V_{ud} \rightarrow - V_{cs}^* V_{cd} - V_{ts}^* V_{td}$ Z-Penguin and Boxes (high virtuality): γ, g power expansion in: $A_c - A_u \propto 0 + O(m_c^2/M_W^2)$ γ /g-Penguin (expand in mom.): A_c - A_u \propto O(Log(m_c²/m_u²)) $\operatorname{Im} V_{ts}^* V_{td} = -\operatorname{Im} V_{cs}^* V_{cd} = \mathcal{O}(\lambda^5)$ $\mathrm{Im}V_{uc}^*V_{ud}=0$ $\operatorname{Re}V_{us}^*V_{ud} = -\operatorname{Re}V_{cs}^*V_{cd} = \mathcal{O}(\lambda^1)$ $\operatorname{Re}V_{ts}^*V_{td} = \mathcal{O}(\lambda^5)$

- CP Violation in Decay: $Im A_{\mathcal{K}}/Re A_{\mathcal{K}} = \lambda^4 \cdot loop$
- $K \rightarrow \pi \bar{\nu} \nu$ (from Z & Boxes): Clean and suppressed
- Lattice input needed for all other decays

Meson-antimeson mixing

Restricting to $\{|K^0\rangle, |\overline{K}^0\rangle\}$, the time evolution is given by

$$\hat{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{11} \end{pmatrix} = \begin{pmatrix} \langle K^0 | T | K^0 \rangle & \langle K^0 | T | \overline{K}^0 \rangle \\ \langle \overline{K}^0 | T | K^0 \rangle & \langle \overline{K}^0 | T | \overline{K}^0 \rangle \end{pmatrix} = \hat{M} - \frac{i}{2} \hat{\Gamma}$$

▶ QCD \rightarrow $H_{11} = H_{22}$

► weak $\Delta F = 2$ interactions $\rightarrow H_{12}$ and H_{21} . Eigenvectors $K_{\underline{S}} = pK^0 + \bar{K}^0$ and $K_{\underline{S}} = pK^0 - \bar{K}^0$. Define: $\lambda_I = \frac{q}{p} \frac{\bar{A}_I}{A_I}$ for (isospin-)final state. CP violation in $K \rightarrow \pi \pi$

• Experimental definition using
$$\eta_{ij} = \frac{\langle \pi^i \pi^j | K_L \rangle}{\langle \pi^i \pi^j | K_S \rangle}$$

 $\epsilon_K = (2\eta_{+-} + \eta_{00})/3$, $\epsilon' = (\eta_{+-} - \eta_{00})/3$
• ϵ_K theory expression $\epsilon_K \simeq \frac{\langle (\pi\pi)_{l=0} | K_L \rangle}{\langle (\pi\pi)_{l=0} | K_S \rangle} =$
 $e^{i\phi_e} \sin \phi_e \frac{1}{2} \arg \left(\frac{-M_{12}}{\Gamma_{12}} \right) = e^{i\phi_e} \sin \phi_e \left(\frac{\operatorname{Im}(M_{12})^{Dis}}{\Delta M_K} + \xi \right)$

$$\langle \mathcal{K}^{0} | \mathcal{H}^{|\Delta S|=2} | \bar{\mathcal{K}}^{0} \rangle \to \operatorname{Im}(M_{12})^{Dis}, \quad \frac{\operatorname{Im}\langle (\pi\pi)_{l=0} | \mathcal{K}^{0} \rangle}{\operatorname{Re}\langle (\pi\pi)_{l=0} | \mathcal{K}^{0} \rangle} \to \xi \quad \phi_{\varepsilon} \equiv \arctan \frac{\Delta M_{\mathcal{K}}}{\Delta \Gamma_{\mathcal{K}}/2}$$

$$\blacktriangleright \quad \epsilon' \text{ theory expression } \epsilon' \simeq \frac{1}{6} \left(\lambda_{00} - \lambda_{+-} \right)$$

$Im(M_{12})$

- We can factorise perturbatively calculated
 - short distance contributions at $\mu_t = m_t$,
 - from long distance effects calculated on Lattice

$$\langle \mathcal{H}_{\mathsf{eff}}
angle = \langle \mathcal{Q}^{|\Delta S=2|}
angle(\mu_{\mathsf{had}}) \quad \mathcal{U}(\mu_{\mathsf{had}},\mu_c) \quad \mathcal{U}(\mu_c,\mu_W) \quad \mathcal{C}(\mu_W)$$

• factorising $U(\mu_{had}, \mu_c) = u^{-1}(\mu_{had})u(\mu_c)$ we write:

$$\blacktriangleright \ \frac{2}{3} f_{\mathcal{K}}^2 M_{\mathcal{K}}^2 \hat{B}_{\mathcal{K}} = \langle \bar{\mathcal{K}}^0 | Q^{|\Delta S = 2|} | \mathcal{K}^0 \rangle u^{-1}(\mu_{\rm had})$$

• $\eta_{ij} S(x_i, x_j) = u(\mu_c) U(\mu_c, \mu_W) C(\mu_W)$ is the short distance contribution

$$Q_{S2} = (\overline{s}_L \gamma_\mu d_L) \otimes (\overline{s}_L \gamma^\mu d_L)$$

Kaon Mixing: CKM Structure

We define
$$\lambda_i = V_{id}V_{is}^*$$

• Using $\lambda_u = -\lambda_c - \lambda_t$ we have

$$A = \lambda_t^2 (A_{tt} - 2A_{tu} + A_{uu}) + 2\lambda_t \lambda_c (A_{tc} - A_{tu} + A_{uu} - A_{cu}) + \lambda_c^2 (A_{uu} - 2A_{cu} + A_{cc})$$

• One could eliminate
$$\lambda_c = -\lambda_u - \lambda_t$$
.

8/26

Kaon Mixing: CKM Structure II

Where $\lambda_i = V_{id}V_{is}^*$, $\lambda \equiv |V_{us}| \sim 0.2$ and we eliminated either: $\lambda_u = -\lambda_c - \lambda_t$ or $\lambda_c = -\lambda_u - \lambda_t$.

$\Delta S = 2$ Hamiltonian - Phase (In)Dependence

• Recall
$$\epsilon_K \propto \arg(-M_{12}/\Gamma_{12})$$

- Trick: pull out λ_u^* and $(\lambda_u^*)^2$ from $H^{\Delta S=1}$ and $H^{\Delta S=2}$:
- Rephaseing invariant: $\lambda_i \lambda_j^* = V_{id} V_{is}^* V_{jd}^* V_{js}$

$$\mathcal{H}_{f=3}^{\Delta S=2} = \frac{G_F^2 M_W^2}{4\pi^2 (\lambda_u^*)^2} Q_{S2} \Big\{ f_1 C_1(\mu) + i J \left[f_2 C_2(\mu) + f_3 C_3(\mu) \right] \Big\} + \text{h.c.}$$

- $J = \text{Im}(V_{us}V_{cb}V_{ub}^*V_{cs}^*)$, f_1 , f_2 and f_3 are rephasing invariant
- Real part $f_1 = |\lambda_u|^4$ is unique
- Splitting of f₂ and f₃ not, but expect good convergence for C₂ and C₃.

Traditional Form

Traditionally the effective Hamiltonian is written as:

$$\mathcal{H}_{t=3}^{\Delta=2} = \frac{G_F^2 M_W^2}{4\pi^2} \Big[\lambda_c^2 C_{S2}^{cc}(\mu) + \lambda_t^2 C_{S2}^{tt}(\mu) + \lambda_c \lambda_t C_{S2}^{ct}(\mu) \Big] Q_{S2} + \text{h.c.}$$

where $f_2 = 2\text{Re}(\lambda_t \lambda_u^*)$, $f_3 = |\lambda_u|^2$ and, using PDG convention and CKM unitarity,

$$C_{S2}^{cc} \equiv C_1, \quad C_{S2}^{ct} \equiv 2C_1 - C_3, \quad C_{S2}^{tt} \equiv C_1 + C_2 - C_3$$

- C₁ ← A_{uu} − 2A_{cu} + A_{cc} has bad short distance behaviour
- C_1 determines ΔM_K via Re M_{12}
- But C_1 contributes to Im M_{12} and hence ϵ_K

Residual scale dependence

QCD corrections to $C_{S2}^{ct} \rightarrow \eta_{ct} = 0.497(47)$ QCD corrections to $C_{S2}^{cc} \rightarrow \eta_{cc} = 1.87(76)$

Im M_{12} without ΔM_K pollution

Using CKM unitarity and the PDG convention we can also write (as used in Lattice [Christ et.al.]):

$$\mathcal{H}_{f=3}^{\Delta=2} = \frac{G_F^2 M_W^2}{4\pi^2} \Big[\lambda_u^2 C_{S2}^{uu}(\mu) + \lambda_t^2 C_{S2}^{tt}(\mu) + \lambda_u \lambda_t C_{S2}^{ut}(\mu) \Big] Q_{S2} + \text{h.c.}$$

▶ Now real Re M_{12} and Im M_{12} are disentangled $C_{S2}^{uu} \equiv C_1, \quad C_{S2}^{tt} \equiv C_2, \quad C_{S2}^{ut} \equiv C_3$

$$C_3 \leftarrow (A_{tu} - A_{tc} + A_{cc} - A_{cu}) \leftarrow \\ \leftarrow (A_{uu} - 2A_{cu} + A_{cc}) - (A_{tc} - A_{tu} + A_{uu} - A_{cu})$$

 Extract anomalous dimensions and matching from old calculation and incorporate matching from η_{cc}

Residual scale dependence

14/26

The top-quark: good convergence

Can be improved with NNLO calculation

SM prediction using PDG input

$$|\epsilon_{\mathcal{K}}| = \kappa_{\epsilon} C_{\epsilon} \widehat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \overline{\eta} \times \left[|V_{cb}|^2 (1 - \overline{\rho}) \eta_{tt}(x_t) - \eta_{ut}(x_c, x_t) \right]$$

CKMfitter 2019 update

Incorporating new formalism shows reduced uncertainty, but $\bar{\rho}$ and $\bar{\eta}$ not the (only) dominant CKM factors.

ϵ'/ϵ

ϵ'/ϵ : Isospin limit and breaking $\epsilon' \simeq (\lambda_{00} - \lambda_{+-})/6$ in terms of charged pion final states.

 $\begin{array}{ll} \text{a}_{0}\text{, }a_{2} \& \text{a}_{2}^{+} \text{ from experiment} & \langle \pi^{0}\pi^{0}|K^{0}\rangle = a_{0}e^{i\chi_{0}} + a_{2}e^{i\chi_{2}}/\sqrt{2} \\ & \text{ [Cirigliano, et.al. `11]} \\ \text{a}_{0} \& \text{a}_{2}\text{: isospin amplitudes} \\ \text{ for isospin conservation} & \langle \pi^{+}\pi^{-}|K^{0}\rangle = a_{0}e^{i\chi_{0}} - a_{2}e^{i\chi_{2}}\sqrt{2} \\ & \langle \pi^{+}\pi^{0}|K^{+}\rangle = 3a_{2}^{+}e^{i\chi_{2}^{+}}/2 \end{array}$

Current theory gives us only: $A_I = \langle (\pi \pi)_I | \mathcal{H}_{\mathrm{eff}} | K \rangle$

Normalise to K⁺ decay (ω_+ , a) and ϵ_K , expand in A_2/A_0 and CP violation:

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) \simeq \frac{\epsilon'}{\epsilon} = -\frac{\omega_{+}}{\sqrt{2}\left|\epsilon_{K}\right|} \left[\frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\left(1-\hat{\Omega}_{\text{eff}}\right) - \frac{1}{a}\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}}\right]$$

[Buras, Gerard 2005.08976] Analysis of isospin breaking, finds 40% reduction wrt RBC-QCD $\label{eq:constraint} \begin{array}{l} Adjusted \ to \ keep \ electroweak \\ penguins \ in \ Im \ A_0 \ [Cirigliano, \ et.al. \ `11] \end{array}$

Effective Hamiltonian for $N_f = 3$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} (z_i(\mu) + \tau \ y_i(\mu)) Q_i(\mu), \quad \tau \equiv -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$$
current-current
$$\begin{array}{c} Q_{1,2/\pm} = (\bar{s}_i u_j)_{V-A} \ (\bar{u}_k d_l)_{V-A} \\ Q_{23,...,6} = (\bar{s}_i d_j)_{V-A} \ \sum_{q=u,d,s} (\bar{q}_k q_l)_{V\pm A} \\ electroweak \\ penguins \\ \end{array}$$

$$\begin{array}{c} Q_{1,2/\pm} = (\bar{s}_i d_j)_{V-A} \ \sum_{q=u,d,s} (\bar{q}_k q_l)_{V\pm A} \\ Q_{23,...,10} = (\bar{s}_i d_j)_{V-A} \ \sum_{q=u,d,s} e_q(\bar{q}_k q_l)_{V\pm A} \end{array}$$

C1-C6 @ NNLO [1611.08276] ; C7-C10 Partial NNLO [hep-ph/9911250]

Fierz identities: Q₄ = Q₃ + Q₂ − Q₁, Q₉ = 3/2Q₁ − Q₃ and Q₁₀ = Q₂ + Q₁ − Q₃ plus Isospin: ⟨Q_{3/4}⟩₂ = 0

 \rightarrow Some matrix elements cancel in ${\rm Im}A_0/{\rm Re}A_0$ and ${\rm Im}A_2/{\rm Re}A_2.$ $_{\scriptscriptstyle [1507.06345]}$

Lattice calculations

- RBC UKQCD calculation [1502.00263] of A₂
- RBC UKQCD calculation [2004.09440] of A₀

$$\operatorname{Re}(\epsilon'/\epsilon)_{\mathsf{RBCUKQCD}} = 21.7(2.6)(6.2)(5.0) \cdot 10^{-4}$$

Uncertainties are statistical, systematic, and iso-spin breaking

$${
m Re}(\epsilon'/\epsilon)_{ ext{experiment}} = 16.6(2.3)\cdot 10^{-4}$$

$K \to \pi \, \bar{\nu} \, \nu$

$K \rightarrow \pi \bar{\nu} \nu$ at M_W

- Below the charm: Only Q_{ν} , ME from K_{l3}
- semi-leptonic (s
 [¯]
 ^{γμ} u_L)(v
 ^{γμ} ℓ_L) operator: χ PT gives small contribution (10% of charm contribution)

Expressions for $K \rightarrow \pi \bar{\nu} \nu$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ (1 + \Delta_{\rm EM}) \cdot \left[\left(\frac{{\rm Im}\lambda_t}{\lambda^5} X(x_t) \right)^2 + \left(\frac{{\rm Re}\lambda_c}{\lambda} P_c(X) + \frac{{\rm Re}\lambda_t}{\lambda^5} X(x_t) \right)^2 \right]$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \cdot \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X(x_t)\right)^2$$

- Im $\lambda_t = \eta A^2 \lambda^5$, Re $\lambda_t = \frac{\lambda^2 2}{2} A^2 \lambda^2 (1 \bar{\rho})$, Re $\lambda_c = \lambda \frac{\lambda^2 2}{2}$
- κ₊, κ_L, Δ_{EM} strong and em iso-spin breaking [0705.2025]
- ► $P_c = P_c^{\text{pert.}} + \delta P_{c,u} = 0.372(15) + 0.04(2) \leftarrow (\text{NNLO} + \text{EW}) [\text{ph}/0603079] [0805.4119] + <math>\chi$ PT & Lattice [ph/0503107] [1806.11520]

Uncertainty Analysis using UTfit values

$\mathcal{B}_+ \cdot \ \mathbf{10^{11}}$	Central:	8.510	$\mathscr{B}_L \cdot 10^{11}$	Central:	2.858
Error:	-0.543	0.555	Error:	-0.256	0.264
Α	-0.34	0.352	A	-0.162	0.17
$\delta P_{c,u}$	-0.246	0.250	η	-0.162	0.167
Xt	-0.236	0.240	X _t	-0.113	0.115
ρ	-0.161	0.162	κ_l	-0.017	0.002
P _c	-0.185	0.187	λ	-0.001	0.00
κ_+	-0.041	0.041			
η	-0.037	0.039			
$\dot{\lambda}$	-0.003	0.003			

Precise theory prediction, suppression in standard model and current measurement at NA62 & KOTO → see talks in this session

CKM input: $A = 0.826(12), \bar{\rho} = 0.148(13), \bar{\eta} = 0.348(10)$

25/26

Conclusions

- ► Perturabtion theory allows for precise theory prediction of $K \rightarrow \pi \bar{\nu} \nu$ decay modes and, with remarkable progress from Lattice, in CP violting hadronic decays.
- Observables are highly suppressed in the standard model and their measurement constraints models of new physics.
- \blacktriangleright We can constrain high energy physics paramters \rightarrow next talk
 - See also talk by Ulserik Moldanazarova in the DESY theory forum today on renormalised results for the ΔF = 1 effective Hamiltonian in generic extensions of the Standard Model.