Connecting Flavor at Low and High pt

David Marzocca

BEAUTY 2020 - 23/09/2020

Indirect searches of New Physics

LHC strongly hints to the existence of a **mass gap** between the SM degrees of freedom and the (unknown) mass scale of new states.

Precision measurements can allow to test New Physics at scales not reachable by direct searches

 $E, m_Z \ll \Lambda$

Ēδ

NCU

GA P

- MASS

PHYSICS

Indirect searches of New Physics

LHC strongly hints to the existence of a **mass gap** between the SM degrees of freedom and the (unknown) mass scale of new states.

Precision measurements can allow to test New Physics at scales not reachable by direct searches

 $E, m_Z \ll \Lambda$

Effective Field Theories allow to describe the low-energy effects of heavy states — expansion in powers of $1/\Lambda$

$$\mathcal{L}^{\text{eff}} = \mathcal{L}_{\text{SM}} + \left[\sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}\right] + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots\right]$$

For this talk, we focus on **four-fermion semi-leptonic** operators

$$\frac{C_{ij}}{\Lambda^2} \left(\overline{q}_i \int_{X} q_j \right) \left(\overline{f} \int_{X} f \right) \qquad f = l, \nu$$

NCW

- MASS GAP

David Marzocca

Beauty 2020

The **EFT contribution** to the scattering amplitude **grows with energy**, compared with the SM.

\$ >7 M²w

Less precise measurements at high energy can be competitive with very precise ones at low energy.

David Marzocca

Beauty 2020

David Marzocca

(e.g. scalar, tensor,

flavor-violating)

EFT in the high-pT tails

With present accuracy, the limits are mainly driven by the **quadratic terms.** *

* see backup slides for implications regarding EFT validity.

Neutral current

$$pp \rightarrow \ell^+ \ell^-$$
Relative
deviation
from SM
 $\frac{\Delta \nabla}{\nabla_{sn}}(\hat{s}) \sim \frac{\chi_{\hat{q}_i q_j} + \chi_{\hat{q}_j q_i}}{\chi_{\hat{q}_i +} + \chi_{\bar{\upsilon}u}} \left| \frac{\xi_{ij}}{q_{ij}^2} \frac{\hat{s}}{v^2} \right|^2$
 $\frac{\zeta_{ij}}{\Lambda^2} \equiv \frac{\xi_{ii}}{v^2}$

۶.

EFT in the high-pT tails

With present accuracy, the limits are mainly driven by the quadratic terms. *

* see backup slides for implications regarding EFT validity.

Limits on semi-leptonic operators

NP above the TeV scale should satisfy SM gauge invariance, thus the correct EFT to describe it is the SM EFT

Limits on semileptonic operators

[Greljo, D.M. 1704.09015, Les Houches 2002.12220 (Sec.2)]

Limits in the Warsaw basis, shown here one operator at a time. No sizeable correlations since different operators do not interfere

C_i	ATLAS 36.1 fb ⁻¹	3000 fb^{-1}	C_i	ATLAS 36.1 fb ⁻¹	3000 fb^{-1}
$C_{O^1L^1}^{(1)}$	[-0.0, 1.75] ×10 ⁻³	[-1.01, 1.13] ×10 ⁻⁴	$C_{Q^1L^2}^{(1)}$	[-5.73, 14.2] ×10 ⁻⁴	[-1.30, 1.51] ×10 ⁻⁴
$C_{O^{1}L^{1}}^{(3)}$	[-8.92, -0.54] ×10 ⁻⁴	[-3.99, 3.93] ×10 ⁻⁵	$C_{Q^{1}L^{2}}^{(3)}$	$[-7.11, 2.84] \times 10^{-4}$	$[-5.25, 5.25] \times 10^{-5}$
$C_{u_R L^1}$	$[-0.19, 1.92] \times 10^{-3}$	[-1.56, 1.92] ×10 ⁻⁴	$C_{u_R L^2}$	[-0.84, 1.61] ×10 ⁻³	$[-2.00, 2.66] \times 10^{-4}$
$C_{u_R e_R}$	$[0.15, 2.06] \times 10^{-3}$	[-7.89, 8.23] ×10 ⁻⁵	$C_{u_R\mu_R}$	$[-0.52, 1.36] \times 10^{-3}$	$[-1.04, 1.08] \times 10^{-4}$
$C_{Q^1e_R}$	$[-0.40, 1.37] \times 10^{-3}$	$[-1.8, 2.85] \times 10^{-4}$	$C_{Q^1\mu_R}$	$[-0.82, 1.27] \times 10^{-3}$	$[-2.25, 4.10] \times 10^{-4}$
$C_{d_R L^1}$	$[-2.1, 1.04] \times 10^{-3}$	[-7.59, 4.23] ×10 ⁻⁴	$C_{d_R L^2}$	$[-2.13, 1.61] \times 10^{-3}$	[-8.98, 5.11] ×10 ⁻⁴
$C_{d_R e_R}$	$[-2.55, 0.46] \times 10^{-3}$	$[-3.37, 2.59] \times 10^{-4}$	$C_{d_R\mu_R}$	$[-2.31, 1.34] \times 10^{-3}$	$[-4.89, 3.33] \times 10^{-4}$
$C_{O^2L^1}^{(1)}$	$[-6.62, 4.36] \times 10^{-3}$	$[-3.31, 1.92] \times 10^{-3}$	$C_{Q^{2}L^{2}}^{(1)}$	$[-8.84, 7.35] \times 10^{-3}$	$[-3.83, 2.39] \times 10^{-3}$
$C_{O^{2}L^{1}}^{(3)}$	$[-8.24, 2.05] \times 10^{-3}$	$[-8.87, 7.90] \times 10^{-4}$	$C_{Q^2L^2}^{(3)}$	$[-9.75, 5.56] \times 10^{-3}$	$[-1.43, 1.15] \times 10^{-3}$
$C_{Q^2 e_R}$	$[-4.67, 6.34] \times 10^{-3}$	$[-2.11, 3.30] \times 10^{-3}$	$C_{Q^2\mu_R}$	$[-7.53, 8.67] \times 10^{-3}$	$[-2.58, 3.73] \times 10^{-3}$
$C_{s_R L^1}$	$[-7.4, 5.9] \times 10^{-3}$	$[-3.96, 2.8] \times 10^{-3}$	$C_{s_R L^2}$	$[-1.04, 0.93] \times 10^{-2}$	$[-4.42, 3.33] \times 10^{-3}$
$C_{s_R e_R}$	[-8.17, 5.06] ×10 ⁻³	$[-3.82, 2.13] \times 10^{-3}$	$C_{s_R\mu_R}$	$[-1.09, 0.87] \times 10^{-2}$	$[-4.67, 2.73] \times 10^{-3}$
$C_{c_R L^1}$	$[-0.83, 1.13] \times 10^{-2}$	$[-3.74, 5.77] \times 10^{-3}$	$C_{c_R L^2}$	$[-1.33, 1.52] \times 10^{-2}$	[-4.58, 6.54] ×10 ⁻³
$C_{c_R e_R}$	$[-0.67, 1.27] \times 10^{-2}$	$[-2.59, 4.17] \times 10^{-3}$	$C_{c_R\mu_R}$	$[-1.21, 1.62] \times 10^{-2}$	$[-3.48, 6.32] \times 10^{-3}$
$C_{b_L L^1}$	$[-1.93, 1.19] \times 10^{-2}$	$[-8.62, 4.82] \times 10^{-3}$	$C_{b_L L^2}$	$[-2.61, 2.07] \times 10^{-2}$	$[-11.1, 6.33] \times 10^{-3}$
$C_{b_L e_R}$	$[-1.47, 1.67] \times 10^{-2}$	[-7.29, 8.99] ×10 ⁻³	$C_{b_L \mu_R}$	$[-2.28, 2.42] \times 10^{-2}$	$[-8.53, 10.0] \times 10^{-3}$
$C_{b_R L^1}$	$[-1.65, 1.49] \times 10^{-2}$	$[-8.86, 7.48] \times 10^{-3}$	$C_{b_R L^2}$	$[-2.41, 2.29] \times 10^{-2}$	$[-9.90, 8.68] \times 10^{-3}$
$C_{b_R e_R}$	$[-1.73, 1.40] \times 10^{-2}$	[-9.38, 6.63] ×10 ⁻³	$C_{b_R\mu_R}$	$[-2.47, 2.23] \times 10^{-2}$	$[-10.5, 7.97] \times 10^{-3}$

 $C_x \equiv \frac{v^2}{\Lambda^2} c_x$

Limits on semileptonic operators

[Greljo, D.M. 1704.09015, Les Houches 2002.12220 (Sec.2)]

Limits in the Warsaw basis, shown here one operator at a time.

No sizeable correlations since different operators do not interfere

C_i	ATLAS 36.1 fb ⁻¹	~ 10 -3 -	10-2	precision	n <u>now</u>	
$C^{(1)}_{Q^1L^1}$	[-0.0, 1.75] ×10 ⁻³					
$C^{(3)}_{Q^1L^1}$	[-8.92, -0.54] ×10 ⁻⁴	م ²	1r ² g	=1		
$C_{u_R L^1}$	$[-0.19, 1.92] \times 10^{-3}$	C = 0*	v	▶ M < 8	Toll	
$C_{u_R e_R}$	$[0.15, 2.06] \times 10^{-3}$	<u>м</u>	2			
$C_{Q^1e_R}$	$[-0.40, 1.37] \times 10^{-3}$	1 (
$C_{d_R L^1}$	$[-2.1, 1.04] \times 10^{-3}$					
$C_{d_R e_R}$	$[-2.55, 0.46] \times 10^{-3}$					
$C^{(1)}_{O^2L^1}$	$[-6.62, 4.36] \times 10^{-3}$					
$C_{Q^2L^1}^{(3)}$	$[-8.24, 2.05] \times 10^{-3}$	a <i>5-10</i>	-fold	improvem	ient	
$C_{Q^2 e_R}$	$[-4.67, 6.34] \times 10^{-3}$		at HI			
$C_{s_R L^1}$	$[-7.4, 5.9] \times 10^{-3}$					
$C_{s_R e_R}$	$[-8.17, 5.06] \times 10^{-3}$	$[-3.82, 2.13] \times 10^{-3}$	$C_{s_R\mu_R}$	$[-1.09, 0.87] \times 10^{-2}$	$[-4.67, 2.73] \times 10^{-3}$	
$C_{c_R L^1}$	$[-0.83, 1.13] \times 10^{-2}$	$[-3.74, 5.77] \times 10^{-3}$	$C_{c_R L^2}$	$[-1.33, 1.52] \times 10^{-2}$	$[-4.58, 6.54] \times 10^{-3}$	
$C_{c_R e_R}$	$[-0.67, 1.27] \times 10^{-2}$	$[-2.59, 4.17] \times 10^{-3}$	$C_{c_R\mu_R}$	$[-1.21, 1.62] \times 10^{-2}$	$[-3.48, 6.32] \times 10^{-3}$	
$C_{b_L L^1}$	$[-1.93, 1.19] \times 10^{-2}$	$[-8.62, 4.82] \times 10^{-3}$	$C_{b_L L^2}$	$[-2.61, 2.07] \times 10^{-2}$	$[-11.1, 6.33] \times 10^{-3}$	
$C_{b_L e_R}$	$[-1.47, 1.67] \times 10^{-2}$	$[-7.29, 8.99] \times 10^{-3}$	$C_{b_L \mu_R}$	$[-2.28, 2.42] \times 10^{-2}$	$[-8.53, 10.0] \times 10^{-3}$	σv^2
$C_{b_R L^1}$	$[-1.65, 1.49] \times 10^{-2}$	[-8.86, 7.48] ×10 ⁻³	$C_{b_R L^2}$	[-2.41, 2.29] ×10 ⁻²	[-9.90, 8.68] ×10 ⁻³	$C_{\chi} \equiv \frac{V}{\Lambda^2} c_{\chi}$
C_{1}	$\begin{bmatrix} 1 73 & 1 401 \\ 10^{-2} \end{bmatrix}$	$[-9.38, 6.63] \times 10^{-3}$	$C_{h_{p}\mu_{p}}$	$[-2.47, 2.23] \times 10^{-2}$	$[-10.5, 7.97] \times 10^{-3}$	1

From $b \rightarrow s\mu\mu$ transitions $B \rightarrow K^{(*)}\mu\mu$: $R(K^{(*)})$, P₅', ...

D'Amico et al. 1704.05438, Algueró et al. 1903.09578, Alok et al. 1903.09617, Ciuchini et al. 1903.09632, Aebischer et al 1903.10434, ...

 $\frac{1}{\Lambda_{bs\mu}^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\mu}_L \gamma^\mu \mu_L)$

 $\Lambda_{bs\mu} \sim 34 \text{ TeV}$

Can we test this contact interaction directly at the LHC?

From $b \rightarrow s\mu\mu$ transitions $B \rightarrow K^{(*)}\mu\mu$: $R(K^{(*)})$, P₅', ...

D'Amico et al. 1704.05438, Algueró et al. 1903.09578, Alok et al. 1903.09617, Ciuchini et al. 1903.09632, Aebischer et al 1903.10434, ...

 $\frac{1}{\Lambda_{bs\mu}^2} (\bar{s}_L \gamma_\mu b_L) (\bar{\mu}_L \gamma^\mu \mu_L)$

 $\Lambda_{bs\mu} \sim 34 \text{ TeV}$

Can we test this contact interaction directly at the LHC?

present (future 3ab⁻¹) limits:

$$\Lambda_{bs\mu} > 2.5$$
 (4.1) TeV

[Greljo, D.M. 1704.09015, See also Kohda et al. 1803.07492]

No hope to see this directly.... but...

NP \mathbb{R}^{32} TeV \leftarrow New Physics for $R(K^{(*)})$

In most flavour models, this flavour-violating operator is related to flavour-conserving ones via a small coupling

$$\frac{1}{\Lambda_{qq\mu}^2} \left[\lambda_{bs}^q (\bar{s}_L \gamma_\mu b_L) + (\bar{q}_L \gamma_\mu q_L) \right] (\bar{\mu}_L \gamma^\mu \mu_L)$$

In most flavour models, this flavour-violating operator is related to flavour-conserving ones via a small coupling

$$\frac{1}{\Lambda_{qq\mu}^2} \left[\lambda_{bs}^q (\bar{s}_L \gamma_\mu b_L) + (\bar{q}_L \gamma_\mu q_L) \right] (\bar{\mu}_L \gamma^\mu \mu_L)$$

We can test models which relate the bs coupling to unsuppressed flavour-diagonal ones. e.g. $\lambda^{q}_{bs} \sim V_{ts}$ in Minimal Flavor Violation

Minimal Flavour Violation

Assumption: The only breaking of the SU(3)⁵ flavour symmetry is via the SM Yukawas.

$$\mathcal{J} = \frac{C_{ij}^{NP}}{\sqrt{2}} \left[\left[\overline{d}_{i}^{i} \delta_{\mu} d_{i}^{j} \right] \left(\overline{\mu}_{i} \delta_{\mu}^{P} d_{i}^{j} \right) \left(\overline{\mu}_{i} \delta_{\mu}^{P} d_{i}^{j} \right) - C_{ij}^{NP} \left[\left[\left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] \right] - C_{DP} \left[\left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[\left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[\left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right]_{ij}^{i} + \ldots \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{b} \left[S_{ij}^{i} + a^{b} \left(\frac{\gamma}{\sigma} \right)^{+} \right] - C_{DP} \left[S_{ij}^{i} + a^{c$$

1.12

We get a <u>prediction</u> for $C_{D\mu}$ (up to O(1) factors)

$$|C_{D\mu}| \sim 1.4 \times 10^{-3}$$

 $\Lambda_{D\mu} \sim 6.4 \text{TeV}$

 $C_{bs\mu} = rac{v^2}{\Lambda_{bs\mu}^2} \quad \mbox{Fixed by} \ \mathsf{R}(\mathsf{K}^{(*)}) \ \mbox{fits}$

Minimal Flavour Violation

Beauty 2020

Charm physics vs. dilepton tails

[Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez 2003.12421]

 $c \longrightarrow u \; \ell^+ \ell^-$

Due to larger theory and experimental uncertainties, FCNC decays in charm are less precise than those in the Kaon or Bottom sector.

Limits from high-energy tails at LHC are thus competitive with those from decays,

except in the case of scalar operators due to the chiral enhancement in leptonic D⁰ decays.

Charged Current

 $u_i d_i \rightarrow \tau v$

[Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez 1811.0792, 2003.12421; D.M., Min, Son, 2008.07541]

This channel is particularly interesting now due to the **connection with R(D(*))**

 $\mathcal{L}_{\text{BSM}} = \frac{2c}{\Lambda^2} (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau) + h.c.$ if $c = 1 \longrightarrow \Lambda_{\text{R(D)}} \sim 4.5 \text{ TeV}$

Can LHC mono-tau tails test this?

$$\frac{\sum \nabla (\hat{s})}{\nabla_{sm}} \sim \frac{\mathcal{L}_{\bar{u}_i d_j} + \mathcal{L}_{\bar{d}_i u_j}}{\mathcal{L}_{\bar{u}_d} + \mathcal{L}_{\bar{d}_u}} \left| \frac{\mathcal{E}_{ij} V_{ij}}{\mathcal{Q}_{sm}^2 V_{ud}} \frac{\hat{s}}{v^2} \right|^2 \qquad \frac{\mathcal{L}_{ij}}{\Lambda^2} = \frac{\mathcal{E}_{ij} V_{ij}}{v^2}$$

Beauty 2020

Mono-tau tails

[Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez 1811.0792, 2003.12421; D.M., Min, Son, 2008.07541]

LHC mono-tau tails probes all quark flavours except top.

Different flavours and chiralities do not interfere: can put limits on all operators.

$$\mathcal{L}_{\text{eff}}^{\text{CC}} = -\mathcal{H}_{\text{eff}}^{\text{CC}} = -\frac{4G_f V_{ij}}{\sqrt{2}} \Big[C_{VLL}^{ij} (\bar{u}_i \gamma_{\mu} P_L d_j) (\bar{\tau} \gamma^{\mu} P_L \nu_{\tau}) + C_{VRL}^{ij} (\bar{u}_i \gamma_{\mu} P_R d_j) (\bar{\tau} \gamma^{\mu} P_L \nu_{\tau}) + C_{SL}^{ij} (\bar{u}_i P_L d_j) (\bar{\tau} P_L \nu_{\tau}) + C_{SR}^{ij} (\bar{u}_i P_R d_j) (\bar{\tau} P_L \nu_{\tau}) + C_{T}^{ij} (\bar{u}_i \sigma_{\mu\nu} P_L d_j) (\bar{\tau} \sigma^{\mu\nu} P_L \nu_{\tau}) \Big] + h.c. \; .$$

Mono-tau tails

[Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez 1811.0792, 2003.12421; D.M., Min, Son, 2008.07541]

LHC mono-tau tails probes all quark flavours except top.

Different flavours and chiralities do not interfere: can put limits on all operators.

$$\mathcal{L}_{\text{eff}}^{\text{CC}} = -\mathcal{H}_{\text{eff}}^{\text{CC}} = -\frac{4G_f V_{ij}}{\sqrt{2}} \Big[C_{VLL}^{ij} (\bar{u}_i \gamma_\mu P_L d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{SL}^{ij} (\bar{u}_i P_L d_j) (\bar{\tau} P_L \nu_\tau) + C_{SR}^{ij} (\bar{u}_i P_R d_j) (\bar{\tau} P_L \nu_\tau) + C_{T}^{ij} (\bar{u}_i \sigma_{\mu\nu} P_L d_j) (\bar{\tau} \sigma^{\mu\nu} P_L \nu_\tau) \Big] + h.c. .$$

The sensitivity to operators involving a b-quark can be improved by adding a b-jet tagging.

- Improves the Signal/Background ratio
- Selects only operators with b-quark

How big is the improvement?

Analysis details

We recast CMS τv analysis at 13 TeV and 35.9fb⁻¹ [1807.11421] $p_T(\tau) > 80 \text{ GeV}$, $|\eta(\tau)| < 2.1$, $p_T^{miss} > 200 \text{ GeV}$ $0.7 < p_T^{\tau}/p_T^{miss} < 1.3$, $\Delta \phi(\vec{p}_T^{\tau}, \vec{p}_T^{miss}) > 2.4$

For each bin we get the xsection:

$$\sigma = \sigma_{SM} + C_X^{ij} \, \sigma_{SM-EFT}^{ij,X} + (C_X^{ij})^2 \, \sigma_{EFT^2}^{ij,X}$$

... which we use to build the likelihood

Analysis details

We recast CMS τv analysis at 13 TeV and 35.9fb⁻¹ [1807.11421] $p_T(\tau) > 80 \text{ GeV}$, $|\eta(\tau)| < 2.1$, $p_T^{miss} > 200 \text{ GeV}$ $0.7 < p_T^{\tau}/p_T^{miss} < 1.3$, $\Delta \phi(\vec{p}_T^{\tau}, \vec{p}_T^{miss}) > 2.4$

For each bin we get the xsection:

$$\sigma = \sigma_{SM} + C_X^{ij} \, \sigma_{SM-EFT}^{ij,X} + (C_X^{ij})^2 \, \sigma_{EFT^2}^{ij,X}$$

... which we use to build the likelihood

After validating with CMS τv analysis, we devise **our own** τv +**b** analysis $p_T(\tau) > 70 \text{ GeV}$, $|\eta(\tau)| < 2.1$, $p_T^{miss} > 150 \text{ GeV}$ $p_T(b) > 20 \text{ GeV}$, $|\eta(b)| < 2.5$, $N_j \le 4$ $0.7 < p_T^{\tau}/p_T^{miss} < 1.3$, $\Delta \phi(\vec{p}_T^{\tau}, \vec{p}_T^{miss}) > 2.4$

EFT limits and prospects [D.M., Min, Son, 2008.07541]

95%CL limits

EFT coeff.	CMS ($\mathcal{L}=35.9 \text{ fb}^{-1}$)	$\tau \nu$ - $\mathcal{L}=300~{ m fb}^{-1}$	$ au u b$ - \mathcal{L} =300 fb ⁻¹
$ C_{SL}^{11} $	$1.5 imes 10^{-3}$	$1.1 imes 10^{-3}$	_
$\left C_{SL}^{12} ight $	$9.8 imes10^{-3}$	$7.5 imes10^{-3}$	_
$\left C_{SL}^{13} ight $	2.2	1.7	1.1
$\left C_{SL}^{21} ight $	$1.6 imes 10^{-2}$	$1.2 imes 10^{-2}$	_
$\left C_{SL}^{22} ight $	$9.8 imes 10^{-3}$	$7.5 imes10^{-3}$	_
$\left C_{SL}^{23} ight $	0.33	0.26	0.18
$ C_{SL}^{23} = 4 C_T^{23} $	0.31	0.24	0.17
$ C^{11}_{SR} $	$1.5 imes 10^{-3}$	$1.1 imes 10^{-3}$	_
$\left C_{SR}^{12} ight $	$9.9 imes 10^{-3}$	$7.5 imes 10^{-3}$	_
$\left C_{SR}^{13} ight $	2.2	1.7	1.1
$\left C_{SR}^{21} ight $	$1.6 imes 10^{-2}$	$1.2 imes 10^{-2}$	-
$\left C_{SR}^{22} ight $	$9.7 imes 10^{-3}$	$7.5 imes10^{-3}$	_
$\left C_{SR}^{23} ight $	0.33	0.26	0.19
$ C_{T}^{11} $	$8.5 imes 10^{-4}$	$6.5 imes 10^{-4}$	_
$ C_{T}^{12} $	$5.5 imes 10^{-3}$	$4.2 imes 10^{-3}$	_
$ C_{T}^{13} $	1.3	0.97	0.57
$ C_{T}^{21} $	$9.4 imes 10^{-3}$	$7.2 imes 10^{-3}$	_
$ C_{T}^{22} $	$5.8 imes 10^{-3}$	$4.5 imes 10^{-3}$	_
$ C_{T}^{23} $	0.20	0.16	0.099
C_{VLL}^{11}	$[-0.40, 3.2] \times 10^{-3}$	$3.1 imes 10^{-4}$	-
C_{VLL}^{12}	$[-0.78, 1.1] \times 10^{-2}$	$9.0 imes10^{-3}$	_
C_{VLL}^{13}	[-2.1, 2.1]	1.6	0.93
C_{VLL}^{21}	$[-1.4, 1.8] \times 10^{-2}$	$1.4 imes 10^{-2}$	_
C_{VLL}^{22}	$[-0.73, 1.2] \times 10^{-2}$	$1.5 imes 10^{-3}$	_
C_{VLL}^{23}	$\left[-0.33, 0.34\right]$	[-0.25, 0.26]	[-0.14, 0.15]
$ C_{VRL}^{11} $	1.5×10^{-3}	1.1×10^{-3}	_
$\left C_{VRL}^{12} ight $	$9.6 imes 10^{-3}$	$7.3 imes 10^{-3}$	_
$\left C_{VRL}^{13} ight $	2.1	1.6	0.94
$ C_{VRL}^{21} $	$1.6 imes 10^{-2}$	$1.2 imes 10^{-2}$	_
$\left C_{VRL}^{22} ight $	$9.6 imes10^{-3}$	$7.4 imes 10^{-3}$	_
$ C_{VRL}^{23} $	0.33	0.26	0.15

 $\mathcal{L}_{\text{eff}}^{\text{CC}} = -\mathcal{H}_{\text{eff}}^{\text{CC}} = -\frac{4G_f V_{ij}}{\sqrt{2}} \Big[C_{VLL}^{ij} (\bar{u}_i \gamma_\mu P_L d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] \Big]$ $C_{SL}^{ij}(\bar{u}_i P_L d_j)(\bar{\tau} P_L \nu_{\tau}) + C_{SR}^{ij}(\bar{u}_i P_R d_j)(\bar{\tau} P_L \nu_{\tau}) +$ $C_T^{ij}(\bar{u}_i\sigma_{\mu\nu}P_Ld_j)(\bar{\tau}\sigma^{\mu\nu}P_L\nu_{\tau})\Big]+h.c.$

> By comparing 3rd and 4th columns: b-tagging improves the limits by at least ~30%

EFT limits and prospects [D.M., Min, Son, 2008.07541]

95%CL limits

	EFT coeff.	CMS (\mathcal{L} =35.9 fb ⁻¹)	$\tau \nu$ - \mathcal{L} =300 fb ⁻¹	$\tau \nu b$ - $\mathcal{L}=300~{ m fb}^{-1}$	$] \qquad \mathcal{L}_{\text{eff}}^{\text{CC}} = -\mathcal{H}_{\text{eff}}^{\text{CC}} = -\frac{4G_f V_{ij}}{\sqrt{2}} \Big[C_{VLL}^{ij} (\bar{u}_i \gamma_\mu P_L d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + C_{VRL}^{ij} (\bar{u}_i \gamma_\mu P_R d_j) (\bar{\tau} \gamma^\mu P_L \nu_\tau) \Big] \Big] $
	$ C_{SL}^{11} $	1.5×10^{-3}	1.1×10^{-3}	_	$\sqrt{2}$
	$ C_{SL}^{12} $	9.8×10^{-3}	7.5×10^{-3}	_	$C_{SL}^{i}(u_iP_Ld_j)(\tau P_L u_{ au}) + C_{SR}^{i}(u_iP_Rd_j)(\tau P_L u_{ au}) +$
	$ C_{SL}^{13} $	2.2	1.7	1.1	$C_T^{ij}(\bar{u}_i\sigma_{\mu u}P_Ld_j)(\bar{\tau}\sigma^{\mu u}P_L u_{ au}) + h.c.$
	$ C_{SL}^{21} $	1.6×10^{-2}	1.2×10^{-2}	_	
-	$ C_{SL}^{22} $	9.8×10^{-3}	7.5×10^{-5}	-	
	$ C_{SL}^{23} = 4 C_{T}^{23} $	0.33	0.26	0.18	By comparing
	$\frac{ C_{SL}^{11} }{ C_{SR}^{11} }$	1.5×10^{-3}	1.1×10^{-3}	_	Ord and the columna
	$ C_{SR}^{12} $	$9.9 imes 10^{-3}$	$7.5 imes 10^{-3}$	_	3rd and 4th columns:
	$\left C_{SR}^{13} ight $	2.2	1.7	1.1	
	$ C_{SR}^{21} $	$1.6 imes 10^{-2}$	$1.2 imes 10^{-2}$	_	D-tagging improves the
	$ C_{SR}^{22} $	9.7×10^{-3}	$7.5 imes 10^{-3}$	_	
	$ C_{SR}^{23} $	0.33	0.26	0.19	Ilmits by at least ~30%
	$ C_{T}^{11} $	8.5×10^{-4}	6.5×10^{-4}	_	
	$ C_T^{12} $	5.5×10^{-3}	4.2×10^{-3}	_	
	$ C_T^{13} $	1.3	0.97	0.57	\rightarrow Relevant for R(D ^(*))
	$ C_T^{21} $	9.4×10^{-3}	7.2×10^{-3}	_	
($ C_{T}^{23} $	0.20	4.5 × 10 °		The best-fit for the anomaly is for
L	C_T^{11}	$[-0.40, 3.2] \times 10^{-3}$	3.1×10^{-4}	_	
	C_{VLL}^{12}	$[-0.78, 1.1] \times 10^{-2}$	9.0×10^{-3}	_	C^{cb} (T _o V) = 0.068 ± 0.017
	C_{VLL}^{13}	[-2.1, 2.1]	1.6	0.93	$C_{VLL}(1eV) = 0.003 \pm 0.017$
	C_{VLL}^{21}	$[-1.4, 1.8] \times 10^{-2}$	$1.4 imes 10^{-2}$	_	
	C_{VLL}^{22}	$[-0.73, 1.2] \times 10^{-2}$	1.5×10^{-3}	_	In order to probe this directly ULIUC
	C_{VLL}^{23}	$\left[-0.33, 0.34\right]$	[-0.25, 0.26]	[-0.14, 0.15]	
	$ C_{VRL}^{11} $	1.5×10^{-3}	1.1×10^{-3}	_	and further entimication is needed
	$ C_{VRL}^{12} $	9.6×10^{-3}	7.3×10^{-3}	_	and further optimisation is needed.
	$ C_{VRL}^{13} $	2.1	1.6	0.94	
	$ C_{VRL}^{21} $	1.6×10^{-2}	1.2×10^{-2}	_	
	$ C_{VRL}^{22} $	9.6×10^{-3}	7.4×10^{-3}	-	
	$ C_{VRL}^{23} $	0.33	0.26	0.15	

Flavor at Low vs. High Energy

[D.M., Min, Son, 2008.07541]

How do these LHC limits compare with bounds from low energy?

Let us focus for simplicity on LL operators.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2=300 ID
$\begin{array}{ c c c c c }\hline C_{VLL}^{11} & [-0.40, 3.2] \times 10^{-3} & 3.1 \times 10^{-4} \\ \hline \end{array}$	\neg $\tau \rightarrow \nu \pi$ $C^{ud}_{VLL} \in [-9.2, 1.6] \times 10^{-3}$
C_{VLL}^{12} [-0.78, 1.1] × 10 ⁻² 9.0 × 10 ⁻³	-
C_{VLL}^{13} [-2.1, 2.1] 1.6	0.93 $B \rightarrow \tau \nu C_{VLL}^{ub}(m_b) \in [-0.13, 0.41]$
$C_{VLL}^{21} \qquad [-1.4, 1.8] \times 10^{-2} \qquad 1.4 \times 10^{-2}$	$- C_{VLL}^{cd} \in [-0.21, 0.27]$
C_{VLL}^{22} [-0.73, 1.2] × 10 ⁻² 1.5 × 10 ⁻³	$- \qquad \qquad$
$C_{VLL}^{23} \qquad [-0.33, 0.34] \qquad [-0.25, 0.26] \qquad [-0$	14,0.15] $ R(D^{(*)}) C_{VLL}^{cb}(\text{TeV}) = 0.068 \pm 0.017$

Mono-tau tails are (or will be in the future) competitive with low-energy limits fromsemileptonic τ decays[A. Pich 1310.7922]and charm physics[for more details on this see Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez, 2003.12421]

Possible Future Improvements

[D.M., Min, Son, 2008.07541]

LHC limits on mono-tau tails can be improved by **increased statistics** and lower systematic (and theory) uncertainties, **finer binning** at large mT,

and study of **angular distributions**:

From partonic events:

Conclusions

High-energy tails of scattering processes at LHC can provide strong tests for New Physics heavier than the direct-searches reach.

The limits in both neutral-current and charged-current channels are complementary with those coming from low-energy flavour measurements

Our recasts are available in terms of the general χ^2 functions of all EFT coefficients:

- pp→µµ/ee: ATLAS Drell-Yan analysis at 8TeV, 20.3fb⁻¹ [https://arxiv.org/abs/2002.12220]
 https://people.sissa.it/~dmarzocc/dileptonATLAS8TeVchiSQ.zip
- $pp \rightarrow \tau v$: CMS 13TeV, 35.9fb⁻¹ ancillary files in arXiv <u>https://arxiv.org/abs/2008.07541</u>

Backup

EFT Validity

The EFT expansion is valid only if

the energy scale the experiment is below the NP mass scale

What about *dim-8* interference w.r.t |*dim-6*|² terms?

$$\begin{aligned} \text{take e.g.} \qquad & \mathcal{L}_{CFT} = \frac{C^{(6)}}{M_{NP}^2} \left[\tilde{\mu}_L \tilde{\lambda}_{\mu} \mu_L \right] \left[\tilde{d}_L \tilde{\lambda}_{\mu}^{\mu} J_L \right] + \frac{C^{(6)}}{M_{NP}^4} \left[\tilde{\mu}_L \tilde{\lambda}_{\mu} \mu_L \right] J^2 \left[\tilde{d}_L \tilde{\lambda}_{\mu}^{\mu} J_L \right] \\ & \hat{\mathcal{C}}(s) \sim \hat{\mathcal{V}}_{SH}(s) \left[1 + \frac{C^{(6)}}{g_{SH}^2} \frac{s}{M_{NP}^2} + \frac{C^{(8)}}{g_{SH}^2} \left(\frac{s}{M_{NP}^2} \right)^2 \right]^2 \\ & = \hat{\mathcal{V}}_{SH}(s) \left[1 + 2 \frac{C^{(6)}}{g_{SH}^2} \frac{s}{M_{NP}^2} + \frac{(C^{(6)})^2}{g_{SH}^4} \left(\frac{s}{M_{NP}^2} \right)^2 + 2 \frac{C^{(8)}}{g_{SH}^2} \left(\frac{s}{M_{NP}^2} \right)^2 + \dots \right] \end{aligned}$$

The dim-8 interference is necessarily smaller than dim-6 interference if $C^{(8)} \leq C^{(6)}$ since $\varsigma \ll M_{NP}^2$. For a single mediator $C^{(8)} = C^{(6)} \sim g_{NP}^2$

[See discussion in Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez 2003.12421]

David Marzocca

Beauty 2020

Compare to explicit model

EFT in the high-pT tails

Estimating the reach

Presently, the limits are dominated by the quadratic terms.

Charged-current $pp \rightarrow \ell v$

$$\frac{\sum \mathcal{V}(\hat{s})}{\mathcal{V}_{sm}} \sim \frac{\mathcal{L}_{\bar{u}_i, d_j} + \mathcal{L}_{\bar{d}_i u_j}}{\mathcal{L}_{\bar{u}_i} + \mathcal{L}_{\bar{d}_i u_i}} \quad \left| \frac{\mathcal{E}_{ij} \mathcal{V}_{ij}}{g_{sm}^2 \mathcal{V}_{u,i}} \frac{\hat{s}}{\mathcal{V}^2} \right|^2 \quad \frac{\mathcal{L}_{ij}}{\Lambda^2} = \frac{\mathcal{E}_{ij} \mathcal{V}_{ij}}{\mathcal{V}^2}$$

SMEFT limits

NP above the TeV scale should satisfy SM gauge invariance. Operator in the SMEFT framework (we use the Warsaw basis)

SMEFT coeff.	CMS ($\mathcal{L}=35.9 \text{ fb}^{-1}$)	$\tau \nu$ - $\mathcal{L}=300~{ m fb}^{-1}$	$ au u b$ - \mathcal{L} =300 fb ⁻¹
$[C_{lq}^{(3)}]_{3311}$	$[-0.39, 3.2] \times 10^{-3}$	$3.1 imes 10^{-4}$	_
$[C_{lq}^{(3)}]_{3312}$	$[-1.1, 2.6] \times 10^{-3}$	$[-0.85, 2.2] \times 10^{-3}$	-
$[C_{lq}^{(3)}]_{3313}$	$[-7.9, 7.9] \times 10^{-3}$	$[-6.1, 6.0] \times 10^{-3}$	$3.5 imes 10^{-3}$
$[C_{lq}^{(3)}]_{3322}$	$[-4.8, 8.8] \times 10^{-3}$	$[-3.5, 7.1] \times 10^{-3}$	_
$[C_{lq}^{(3)}]_{3323}$	$[-1.3, 1.4] \times 10^{-2}$	$[-1.0, 1.1] \times 10^{-2}$	$5.8 imes10^{-3}$
$[C_{lq}^{(3)}]_{3333}$	[-0.33, 0.33]	[-0.25, 0.26]	[-0.14, 0.15]
$ [C_{lequ}^{(1)}]_{3311} $	$2.9 imes 10^{-3}$	2.2×10^{-3}	_
$ [C_{lequ}^{(1)}]_{3312} $	$7.2 imes 10^{-3}$	$5.5 imes 10^{-3}$	_
$ [C_{lequ}^{(1)}]_{3321} $	4.4×10^{-3}	$3.4 imes 10^{-3}$	_
$ [C_{lequ}^{(1)}]_{3322} $	$1.9 imes 10^{-2}$	$1.5 imes 10^{-2}$	_
$ [C_{lequ}^{(1)}]_{3331} $	$1.6 imes 10^{-2}$	$1.2 imes 10^{-2}$	$0.80 imes 10^{-2}$
$ [C_{lequ}^{(1)}]_{3332} $	$2.8 imes 10^{-2}$	$2.2 imes 10^{-2}$	$1.5 imes 10^{-2}$
$ [C_{lequ}^{(3)}]_{3311} $	1.7×10^{-3}	$1.3 imes 10^{-3}$	_
$ [C_{lequ}^{(3)}]_{3312} $	$4.2 imes 10^{-3}$	$3.2 imes 10^{-3}$	_
$ [C_{lequ}^{(3)}]_{3321} $	$2.5 imes 10^{-3}$	$1.9 imes 10^{-3}$	_
$ [C_{lequ}^{(3)}]_{3322} $	$1.1 imes 10^{-2}$	$0.87 imes 10^{-2}$	_
$ [C_{lequ}^{(3)}]_{3331} $	$0.93 imes 10^{-2}$	$0.71 imes 10^{-2}$	0.42×10^{-2}
$ [C_{lequ}^{(3)}]_{3332} $	$1.7 imes 10^{-2}$	$1.3 imes 10^{-2}$	0.83×10^{-2}
$ [C_{ledq}]_{3311} $	$3.0 imes 10^{-3}$	$2.3 imes 10^{-3}$	-
$ [C_{ledq}]_{3312} $	$6.5 imes10^{-3}$	$5.0 imes 10^{-3}$	-
$ [C_{ledq}]_{3313} $	0.17	0.13	_
$ [C_{ledq}]_{3321} $	$4.5 imes 10^{-3}$	$3.5 imes 10^{-3}$	-
$ [C_{ledq}]_{3322} $	$1.4 imes 10^{-2}$	$1.1 imes 10^{-2}$	-
$ [C_{ledq}]_{3323} $	$0.42 imes 10^{-3}$	0.32	-
$ [C_{ledq}]_{3331} $	$1.6 imes10^{-2}$	$1.2 imes 10^{-2}$	$0.81 imes 10^{-2}$
$ [C_{ledq}]_{3332} $	$2.7 imes 10^{-2}$	$2.0 imes 10^{-2}$	$1.5 imes 10^{-2}$
$ [C_{ledg}]_{3333} $	0.66×10^{-3}	0.51	0.37

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{dim6}} &\supset -\frac{1}{v^2} \Big[[C_{lq}^{(3)}]_{ijkl} \left(\bar{l}_i \gamma_\mu \sigma^I l_j \right) \left(\bar{q}_k \gamma^\mu \sigma^I q_l \right) \\ &+ [C_{ledq}]_{ijkl} \left(\bar{l}_i^\alpha e_j \right) \left(\bar{d}_k q_l^\alpha \right) + [C_{lequ}^{(1)}]_{ijkl} \left(\bar{l}_i^\alpha e_j \right) \epsilon_{\alpha\beta} \left(\bar{q}_k^\beta u_l \right) + \text{h.c.} \\ &+ [C_{lequ}^{(3)}]_{ijkl} \left(\bar{l}_i^\alpha \sigma_{\mu\nu} e_j \right) \epsilon_{\alpha\beta} \left(\bar{q}_k^\beta \sigma^{\mu\nu} u_l \right) + \text{h.c.} \Big] , \end{split}$$

$$q_i = (V_{ji}^* u_L^j, d_L^i)$$

SMEFT limits

Due to CKM misalignment, each operator induces correlated effects with different quark flavors.

The limit from mono-tau tails can in some cases be complementary to limits from low-energy processes.