

Recent results from the NA62 experiment

Elisa Minucci*

on behalf of the NA62 Collaboration

Outline:

- Introduction
- The NA62 experiment
- $K^+ \rightarrow \pi^+ vv$ analysis
- Other analyses
- Summary & Prospects

erc

European Research Council

* elisa.minucci@cern.ch

BEAUTY Conference 2020 September 21-24 Tokyo, Japan

FCNC loop process: $s \rightarrow dvv$ quark transition

$K^{*}\!\!\rightarrow\!\!\pi^{*}vv$ and New Physics

35

SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

35

data

The NA62 experiment at the CERN SPS

Broad physics program

- Main goal measure $K^+ \rightarrow \pi^+ vv$ branching ratio
- Rare and forbidden decays : LN and LF violation
- Precision measurements
- **Exotics searches:** dark photon, heavy neutral leptons, axion-like particles

2200 2018 2000 2016 2017 1800 1600 1400 1200 ~2.2 × 10¹⁸ POT collected 1000 800 600 400 200 Apr 17 Aug 17 Dec 17 Apr 18 Aug 16 Dec 16 Aug 18 Dec 18

Protons on T10

2016: 40% of nominal intensity ~0.12 x 10¹² K+ decays in fiducial volume

2017: 60% of nominal intensity ~1.15 x 10¹² K+ decays in fiducial volume

2018: 60%-70% of nominal intensity ~2.6 x 10¹² K+ decays in fiducial volume

The NA62 Experiment: Kaon decay-in-flight technique

- guarantee high photon veto rejection (P_{π0}≥ 30 GeV/c)
- \circ guarantee good π/μ separation

Improvements in 2018

Detector:

• New upstream collimator has been installed to reduce upstream background

10³ Analysis:

- Analysis performed in 7 separate categories
- Category definition depends on hardware configurations (S1 and S2) and momentum
- Selection optimize separately for each category $(\pi^+ \text{ momentum dependent PID, MVA used})$

Increase in global signal acceptance: from 3% of 2017 to:

- 4% before upstream collimator installation (20% of data taking)
- 6.4% after upstream collimator installation

2018 data after selection

Single Event Sensitivity

$$S.\,E.\,S=rac{Br(K^+ o \pi^+
uar
u)}{N_{exp}^{\pi
u
u}}$$

$$N_{exp}^{\pi
u
u}\simeq N_{\pi^+\pi^0}^{obs}rac{A_{\pi
u
u}}{A_{\pi^+\pi^0}}rac{Br(K^+ o\pi^+
uar
u)}{Br(K^+ o\pi^+\pi^0)}\epsilon_{trigger}\epsilon_{RV}$$

$K^{\text{+}} {\rightarrow} \pi^{\text{+}} \pi^0$ normalization channel

Acceptance \rightarrow Evaluated from MC. Ratio allows cancellation of systematic effects

Random Veto Efficiency: losses of signal events because of the accidental presence of photons or/and charged particles

$$N_{exp}^{\pi
u
u} = 7.58 \pm 0.40_{syst} \pm 0.75_{ext}$$

$$S.\,E.\,S = (1.11 \pm 0.07_{syst}) imes 10^{-11}$$

Background from K⁺ decays

Exp. $\pi^+\pi^0$ events in control/signal regions after $\pi\nu\nu$ selection

(including π^0 rejection)

Same procedure for the $K^+ \rightarrow \mu^+ v_{\mu}$ and $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ backgrounds

bias data

4 Sample

2

3

Interactions or decays of beam particles upstream of the FV

- π⁺ is produced and reaches the downstream detectors
- no additional particles associated to the π^+
- a K⁺ candidate is reconstructed and matched to a π⁺

Background evaluation \rightarrow Data-driven approach

2018 data: Control regions unmasked and validated

2018 data: Expected events in signal regions

Process	Expected events (R1+R2)
$K^+ o \pi^+ u ar u$ (SM)	$7.58 \pm 0.40_{syst} \pm 0.75_{ext}$
$K^+ o \pi^+ \pi^0(\gamma)$	0.75 ± 0.04
$K^+ o \mu^+ u_\mu(\gamma)$	$0.49\pm~0.05$
$K^+ o \pi^+ \pi^- e^+ u_e$	0.50 ± 0.11
$K^+ o \pi^+ \pi^+ \pi^-$	0.24 ± 0.08
$K^+ o \pi^+ \gamma \gamma$	< 0.1
$K^+ o \pi^0 l^+ u$	< 0.001
Upstream background	$3.30_{-0.73}^{+0.98}$
Total Background	$5.28^{+0.99}_{-0.73}$

2018 data: Signal regions opened

5.3 background + 7.6 SM signal expected events \rightarrow 17 events observed

 M^2_{miss} distribution for 2018 data integrated over the full π^+ momentum.

2018 S1: 80% of 2018 data after the installation of the new collimator 5 GeV/c π^+ momentum bins

2018 S2: 20% of 2018 data before the installation of the new collimator integrated over full π^+ momentum range

Run 1(2016+2017+2018 data) preliminary result

$$Br(K^+ o \pi^+
u ar{
u}) = (11.0^{+4.0}_{-3.5 stat} \pm 0.3_{syst}) imes 10^{-11}$$
(3.5 σ significance)

Maximum Likelihood Fit using signal and background expectation in each category

$K^{*} \rightarrow \pi^{*} \mu^{*} \mu^{-}$: Form Factors and Branching Ratio

Interesting to search for New Physics effects, exploring high mass scale

Experimental strategy: precise three tracks vertex reconstruction + particle ID (LKr+MUV3) **Background:** mis-ID $e^{\pm} \leftrightarrow \pi^{\pm}$ (data-driven), π^{\pm} decay in flight

600

Data (K⁺→π⁻μ⁺e⁺ sel.)

→π⁺π⁺π⁻

->π⁺π⁻e⁺ν

→π⁺π⁻μ⁺\

→u⁺ve⁺e

K⁺→π⁺u⁺u`

K⁺→e⁺vu⁺u`

otal uncertainty

- $K^+ \rightarrow \pi^+ vv$ NA62 results from Run1(2016+2017+2018)
 - 20(1+2+17) events observed with total expected background ~7
 - most precise measurement so far

 $Br(K^+ o \pi^+
u ar
u) = (11.0^{+4.0}_{-3.5 stat} \pm 0.3_{syst}) imes 10^{-11}$

The result is compatible with the SM prediction within one standard deviation

• New results from analyses on rare and forbidden kaon decays as well as on exotic searches have been shown

Towards 2021

- NA62 will resume data taking in 2021
- Upgrade of the experiment setup. Installation of:
 - additional beam spectrometer station
 - upstream veto counter to reduce upstream background
 - new calorimeter downstream of MUV and upstream of the beam dump to further suppress kaon decay background