4-dimensional angular analysis of $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ with hadronic tagging at BABAR [PRL 123, 091801 (2019)]

Biplab Dey

(on behalf of the BaBar Collaboration)

BEAUTY 2020, Japan (virtual) September 23^{rd} , 2020

- Along with semi-tauonic case, $\ell \in \{e, \mu\}$ hold puzzles as well.
- $|V_{cb}|$ tension, higher order Heavy Quark Effective Theory (HQET) corrections for the form-factors, ...
- Experimentally very clean, and fully exclusive final-state with hadronic tagging.
- With the narrow D^* vector meson, excellent system to probe New Physics (NP) on the leptonic side.

The 4-d kinematic variables

- 4-body decay topology
- $\sqrt{q^2}$: di-lepton mass.
- 3 angles: $\Omega \in \{\theta_l, \theta_V, \chi\}$
- $+\hat{z}_h \bullet$ Spin-1 D^* retains full spin info of the recoiling W^* in $b \to cW^{*-}$, unlike spin-0 D, where this info is reduced \Rightarrow richer pheno!

• Two complementary approaches employed in the analysis:

- Angular observables extracted using moments method in 10 q^2 bins.
- Unbinned *z*-expansion FF fit to the form-factors (today).
- In either case, we perform a full 4-d analysis.

The generic 4-d pdf [arXiv:1505.02873]

- Differential rate (4-d fit pdf):
 - $\frac{d\Gamma}{dq^2 d\Omega} \propto \sum_{i=1}^{14} f_i(\Omega) \Gamma_i(q^2)$
- Transversity q^2 amplitudes: $H_0(q^2) \equiv h_0$ $H_{\{\parallel,\perp\}}(q^2) \equiv h_{\{\parallel,\perp\}} \underbrace{e^{i\delta_{\{\parallel,\perp\}}}}_{}$ NP phase
- Orthonormal angular basis:

•
$$Y_l^m \equiv Y_l^m(\theta_l, \chi)$$

• $P_l^m \equiv \sqrt{2\pi} Y_l^m(\theta_V, 0)$

i	$f_i(arOmega)$	$\Gamma_i^{\rm tr}(q^2)/({\bf k}q^2)$
1	$P_0^0 Y_0^0$	$h_0^2+h_\parallel^2+h_\perp^2$
2	$P_{2}^{0}Y_{0}^{0}$	$- \frac{1}{\sqrt{5}}(h_{\parallel}^2 + h_{\perp}^2) + \frac{2}{\sqrt{5}}h_0^2$
3	$P_0^0 Y_2^0$	$\frac{1}{2\sqrt{5}}\left[(h_{\parallel}^2+h_{\perp}^2)-2h_0^2\right]$
4	$P_{2}^{0}Y_{2}^{0}$	$-\frac{1}{10}(h_{\parallel}^2+h_{\perp}^2)-\frac{2}{5}h_0^2$
5	$P_2^1\sqrt{2}Re(Y_2^1)$	$-rac{3}{5}h_{\parallel}h_0\cos\delta_{\parallel}$
6	$P_2^1\sqrt{2}Im(Y_2^1)$	$rac{3}{5}h_{\perp}h_{0}\sin\delta_{\perp}$
7	$P_0^0 \sqrt{2} Re(Y_2^2)$	$-rac{3}{2\sqrt{15}}(h_{\parallel}^2-h_{\perp}^2)$
8	$P_2^0 \sqrt{2} Re(Y_2^2)$	$rac{\sqrt{3}}{10}(h_{\parallel}^2-h_{\perp}^2)$
9	$P_0^0 \sqrt{2} Im(Y_2^2)$	$\sqrt{rac{3}{5}}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
10	$P_2^0 \sqrt{2} Im(Y_2^2)$	$-\frac{\sqrt{3}}{5}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
11	$P_0^0 Y_1^0$	$-\sqrt{3}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
12	$P_2^0 Y_1^0$	$\frac{3}{\sqrt{15}}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
13	$P_2^1 \sqrt{2} Re(Y_1^1)$	$rac{3}{\sqrt{5}}h_{\perp}h_0\cos\delta_{\perp}$
14	$P_2^1\sqrt{2}Im(Y_1^1)$	$-\frac{3}{\sqrt{5}}h_{\parallel}h_0\sin\delta_{\parallel}$

The data sample: hadronic tagging

- We use 426 fb⁻¹ full *BABA*R data: $\Upsilon(4S) \rightarrow B_{tag}\overline{B}_{sig}(\rightarrow D^*\ell^-\overline{\nu}_\ell)$ corresponding to 471M $B\overline{B}$ pairs.
- Hadronic B_{tag} reconstruction: 2968 modes compared to 651 in <u>BABR-09</u> $D\ell \overline{\nu}_{\ell}$ tagged analysis.
- Lower purity but higher efficiency.
- Skim-level tag-side requirement: $m_{\rm ES} > 5.27$ GeV, $|\Delta E| < 72$ MeV.

- Similar to $\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}$ BABAR paper, except no requirement on purity of tag-side modes, since our signal-side is very clean.
- Still cut-based ≌, unlike Belle II

Biplab Dey

The TreeFit to full topology

- Only $D^* \to D\pi_{\rm slow}$ considered. $|\vec{p}_{\pi_{\rm slow}}| < 400$ MeV in lab frame.
- $\Delta m \equiv (m_{D^*} m_D)$ within 4σ of PDG expectation.
- Almost no *uds* continuum background for the charm system.
- TreeFit is critical to this analysis:
 - Mass-constrain the following: $\{B_{tag}, B_{sig}, D, D^*, \nu_{miss}\}$
 - $\Upsilon(4S)$ is beam-spot constrained. D^* vertex-constrained after B flight.
- Final background (~ 3%) very small. Estimated from generic $B\overline{B}$ MC and assigned as systematic.

The discriminating variable \boldsymbol{U}

• Signal variable in $B_{\rm sig}$ rest frame for missing neutrino (from TreeFit w/o ν mass-constraint):

$$U = E_{\mathsf{miss}} - |\vec{p}_{\mathsf{miss}}| = E_{\nu} - |\vec{p}_{\nu}|$$

• Global comparison:

- Good comparisons found in other variables.
- $N_{\rm tot}=6112$, $N_{\rm bkgd}\sim 180$

HQET

Heavy Quark Effective Theory for $\overline{B} \to D^*$

- w: relativistic γ factor of D^* in B RF
- At $\frac{\Lambda_{\text{QCD}}}{m_{b,c}} \to 0$ limit, only w matters.
- Heavy Quark Symm (HQS): $\{b^{\uparrow}, b^{\downarrow}, c^{\uparrow}, c^{\downarrow}\}$ (spin-flavor symm.)
- Non-pert. QCD effects pushed into a single universal FF, $\zeta(w)$.

• In time scales $\ll \Lambda_{
m OCD}^{-1}$ Dirac structure in the weak current irrelevant

$$\begin{aligned} \frac{\langle D^*(v',\varepsilon)|V^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_D^*}} &= ih_V(w)\epsilon^{\mu\nu\alpha\beta}\varepsilon^*_{\nu}v'_{\alpha}v_{\beta} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_D^*}} &= h_{A_1}(w)(w+1)\varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^*\cdot v)v^{\mu} \\ - h_{A_3}(w)(\varepsilon^*\cdot v)v'^{\mu} \\ \end{bmatrix} A_2 &= \frac{rh_{A_2} + h_{A_3}}{r'} \equiv \frac{R_2h_{A_1}}{r'} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_D^*}} &= h_{A_1}(w)(w+1)\varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^*\cdot v)v^{\mu} \\ \end{bmatrix} A_2 &= \frac{rh_{A_2} + h_{A_3}}{r'} \equiv \frac{R_1h_{A_1}}{r'} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_D^*}} &= h_{A_1}(w)(w+1)\varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^*\cdot v)v^{\mu} \\ \end{bmatrix} A_2 &= \frac{rh_{A_2} + h_{A_3}}{r'} \equiv \frac{R_1h_{A_1}}{r'} \\ &= HQS \text{ limit: } \{h_V, h_{A_1}, h_{A_3}\} \rightarrow \zeta(w) \text{ and } h_{A_2} \rightarrow 0. \quad r' \equiv \frac{2\sqrt{m_D^*m_B}}{(m_B^* - s^{+m_B})} \end{aligned}$$

Sept 23rd, 2020 8 / 19

 $(m_{D*} + m_{B})$

z expansion

FF parameterization: BGL basis (Boyd et al.)

- Three versions: BGL95, BGL97 and BGL17.
- BGL FF's: $\{f_0, F_1, g\}$ related to conventional $\{A_1, A_2, V\}$ FF's and the helicity amplitudes $\{H_{\pm}, H_0\}$.

$$\begin{aligned} f_0 &= (m_B + m_{D^*})A_1 \\ F_1 &= \frac{1}{2m_{D^*}} \left[(m_B^2 - q^2 - m_{D^*}^2)(m_B + m_{D^*})A_1 - \frac{4m_B^2 |\mathbf{k}|^2}{(m_{D^*} + m_B)}A_2 \right] \\ &= \sqrt{q^2} H_0 \\ g &= \frac{2V}{m_B + m_{D^*}} \\ H_{\pm} &= (f_0 \mp m_B \mathbf{k} g) \end{aligned}$$

The BGL *z*-expansion

• z is a conformal map from $t \equiv q^2$ to unit circle.

$$z(t, t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$
$$t_{\pm} = (m_B \pm m_{D^*})^2$$

- Choose t_0 so that z is small in the physical region $t \in [0, t_-]$
- Expansion of each FF from dispersion relations + analyticity

$$F_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^N \frac{a_n^i z^n}{2}$$

- Blasche-factor P(z) from $B_c^{(*)}$ poles in non-physical $\sqrt{q^2} > m(BD^*)$ region.
- QCD ϕ_i outer functions.

• NB: $P_i(z)$ and $\phi_i(z)$ are non-trivial and carry significant part of the heavy-lifting in the q^2 shape. We follow Gambino'17.

 $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ angular analysis

Sept 23rd, 2020 10 / 19

z expansion

FF parameterization: CLN [Caprini'97]

• CLN: similar expansion as BGL, but model-dependent extrapolation to $w \to 1$. Compact practical form with only 3 fit parameters:

 $h_{A_1}(w) = h_{A_1}(1)[1 - 8\rho_{D^*}^2 z(w) + (53\rho_{D^*}^2 - 15)z(w)^2 - (231\rho_{D^*}^2 - 91)z(w)^3]$ $R_1(w) = \frac{R_1(1)}{1} - 0.12(w-1) + 0.05(w-1)^2$ $R_2(w) = R_2(1) + 0.11(w-1) - 0.06(w-1)^2$

- Curvature and slope related for h_{A_1} . Too constrained?
- The expansions are derived from HQET+QCDSR, but experimentalists ignore the uncertainties.
- Calculations/uncertainties being carefully revisited by several groups now. $\mathcal{O}(\lambda_{\rm QCD}/m_c) \sim 20\%$ can't be ruled out.

z expansion

The $|V_{ub}|$ - $|V_{cb}|$ inclusive-exclusive tension saga

- $|V_{ub}|, |V_{cb}|$ tension: inclusive *persistently* > exclusive at > 3σ .
- 2017 Grinstein/Gambino: fits to four 1-d projections (prelim. Belle)
- Claim: BGL form-factor parameterization resolves the $|V_{cb}|$ tension.
- Generated a lot of excitement...

Biplab Dey

BABAR BGL fits setup

- Linear BGL expansion till N = 1. (N = 2 terms not statistically significant but creates problems w/ unitarity)
- Two relations used to connect coefficients:
 - Lattice (MILC) constrains h_{A1} at zero-recoil and $f(q_{\rm max}^2) = 2\sqrt{m_B m_D^*} h_{A_1}$
 - Also at zero-recoil, $F_1(q_{\max}^2) = (m_B m_D^*)f(q_{\max}^2)$, so that $a_0^{F_1}$ is not an independent parameter.
- Slight isospin-dependence in above relations (negligible impact w/ current statistics)
- Unbinned non-extended ML fit using full 4-d rate and complete BABAR data in $q^2 \in [0.2, 10.2]$ GeV². No normalization.

BGL fits setup – incorporating $\left|V_{cb}\right|$

• Normalization needed to get $|V_{cb}|$ obtained from HFLAV:

Mode	$\mathcal{B}(\overline{B} \to D^* \ell^- \overline{\nu}_\ell)(\%)$	$ au_B$ (ps)	$\Gamma_{\rm tot}$ $ imes 10^{15}$ (GeV)
B^0	4.88 ± 0.10	1.518 ± 0.004	21.16 ± 0.38
B^+	5.59 ± 0.21	1.638 ± 0.004	22.46 ± 0.79

- Add the $\Gamma_{\rm tot} \equiv \int (d\Gamma/dw) dw = \mathcal{B}/\tau$ as Gaussian constraints.
- Nominal results quoted using the MILC result as a Gaussian constraint:

$$h_{A_1}(1)|_{\text{MILC}} = 0.906 \pm 0.013$$

Unitarity, stability checks and global minima

- Six fit variables: $\{a_0^f, a_1^f, a_1^{F_1}, a_0^g, a_1^g, |V_{cb}|\}$. BABAR-only version (without $|V_{cb}|$) also provided.
- BGL setup is even more complicated than CLN. Significant effort to ensure stability and robustness of the global minimum.
- 1000 fit iterations with randomized start values within $\left[-1,1\right]$ for the BGL coefficients.
- Fit parameters scaled appropriately such that MINOS cov. matrix diag. elements are all $\sim 1.~\rm HESSE$ and MINOS cov. matrices matches.

Systematics and final results

- Most systematics cancel since BABAR part uses no normalization.
- Many cross-checks performed with isospin-separated (different slow pions), e/μ separated fits. Primary remnant source is the background.

• Final N = 1 BGL expansion results, including systematic uncertainties:

$a_0^f \times 10^2$	$a_1^f imes 10^2$	$a_1^{F_1} \times 10^2$	$a_0^g \times 10^2$	$a_1^g imes 10^2$	$ V_{cb} imes 10^3$
1.29 ± 0.03	1.63 ± 1.00	0.03 ± 0.11	2.74 ± 0.11	8.33 ± 6.67	38.36 ± 0.90

• Final CLN results:

$ ho_{D^*}^2$	$R_1(1)$	$R_2(1)$	$ V_{cb} \times 10^3$
0.96 ± 0.08	1.29 ± 0.04	0.99 ± 0.04	38.40 ± 0.84

• Our BGL $|V_{cb}|$ is consistent with WA $|V_{cb}|_{excl.}$ and remains in tension with WA $|V_{cb}|_{incl.}$

BABAR BGL/CLN results

BABAR results - FF shapes

- Dashed curves denote 1σ error bands
- BABAR FF's significantly different from CLN-WA. CLN p-value: 0.0017
- Within BABAR, CLN/BGL seem consistent.
- LCSR'08 at $q^2 = 0$ (large recoil) has huge errors, but central value more consistent with *BABAR*.

Biplab Dey

BABAR results – $R_{1,2}$ ratios

 Included the R_{1,2} curves (w/o errors) from the original Caprini paper.

• BABAR BGL: $R_1(1) \approx 1.2$ and the slope is positive; $R_2 \approx 1$ and flat.

- Consistent with HQET, although no HQET constraints used in the fit. It's what the data prefers.
- Note: CLN $R_{1,2}$ shape is fixed. Too constrained?

Summary

- First tagged 4d $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$ angular analysis using BABAR data
- BABAR FF's w/ BGL/CLN consistent and deviate with CLN-WA.
- BABAR + HFLAV-BF: $|V_{cb}|$ consistent between BGL and CLN-WA. ~ 3σ exclusive-inclusive tension persists (in the $B \rightarrow D^*$ sector).
- Ongoing effort: BABAR BGL fit for $B \to D$ and joint $B \to D^{(*)}$ HQET fits. LQCD $B \to D^* w > 1$ FFs urgently needed!

Summary

- First tagged 4d $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$ angular analysis using BABAR data
- BABAR FF's w/ BGL/CLN consistent and deviate with CLN-WA.
- BABAR + HFLAV-BF: $|V_{cb}|$ consistent between BGL and CLN-WA. ~ 3σ exclusive-inclusive tension persists (in the $B \rightarrow D^*$ sector).
- Ongoing effort: BABAR BGL fit for $B \to D$ and joint $B \to D^{(*)}$ HQET fits. LQCD $B \to D^* w > 1$ FFs urgently needed!

Thank you!

Backup

References

- Gambino'17: arXiv:1703.06124, arXiv:1707.09509
- BGL: hep-ph/9508211, hep-ph/9705252, arXiv:1703.08170
- CLN: arXiv:9712417
- Belle τ/D^* pol.: arXiv:1709.00129, arXiv:1901.06380

The $b \to c W_L^{*-}(\to \ell^- \overline{\nu}_\ell)$ effective Hamiltonian

- In the SM, W_L^{*-} acts a left-handed off-shell spin-1 vector boson.
- The minimal effective Hamiltonian for light leptons is:

$$\mathcal{H}_{\text{eff}} = \frac{2G_F V_{cb}^L}{\sqrt{2}} \left[\left(g^V \bar{c} \gamma_\mu b - g^A \bar{c} \gamma_\mu \gamma_5 b \right) \bar{\ell} \gamma^\mu \nu_L + (\dots) \right]$$

- Additional scalar (charged H^{\pm}) and tensor (Leptoquarks) operators can occur.
- Heavy W_R^- can induce $g_{V,A} \equiv (1 \pm \epsilon_R)$ even for light leptons.
- The helicity amplitudes $\{H_{\pm}, H_0\}$ can acquire phases from complex ϵ_R .

Backup

NP searches: the $\sin\chi$ terms [arXiv:1505.02873]

- In SM, the amplitudes are relatively real. $\sin \chi$ terms are zero.
- Non-zero $\Gamma_{\{6,9,10,14\}}$ would be clear sign of NP!
- Formalism developed at BABAR for both the ρ and D^* vector mesons.
- $\pi\pi$ S-wave under the ρ also very interesting for RH current searches in $b \rightarrow u$.

i	$f_i(arOmega)$	$\Gamma_i^{ m tr}(q^2)/({f k}q^2)$
1	$P_{0}^{0}Y_{0}^{0}$	$h_0^2+h_\parallel^2+h_\perp^2$
2	$P_{2}^{0}Y_{0}^{0}$	$-\frac{1}{\sqrt{5}}(h_{\parallel}^2+h_{\perp}^2)+\frac{2}{\sqrt{5}}h_0^2$
3	$P_0^0 Y_2^0$	$\frac{1}{2\sqrt{5}}\left[(h_{\parallel}^2+h_{\perp}^2)-2h_0^2\right]$
4	$P_{2}^{0}Y_{2}^{0}$	$-rac{1}{10}(h_{\parallel}^2+h_{\perp}^2)-rac{2}{5}h_0^2$
5	$P_2^1\sqrt{2}Re(Y_2^1)$	$-rac{3}{5}h_{\parallel}h_0\cos\delta_{\parallel}$
6	$P_2^1 \sqrt{2} Im(Y_2^1)$	$\frac{3}{5}h_{\perp}h_0\sin\delta_{\perp}$
7	$P_0^0 \sqrt{2} Re(Y_2^2)$	$-rac{3}{2\sqrt{15}}(h_\parallel^2-h_\perp^2)$
8	$P_2^0 \sqrt{2} Re(Y_2^2)$	$rac{\sqrt{3}}{10}(h_{\parallel}^2-h_{\perp}^2)$
9	$P_0^0 \sqrt{2} Im(Y_2^2)$	$\sqrt{rac{3}{5}}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
10	$P_2^0 \sqrt{2} Im(Y_2^2)$	$-\frac{\sqrt{3}}{5}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
11	$P_0^0 Y_1^0$	$-\sqrt{3}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
12	$P_2^0 Y_1^0$	$rac{3}{\sqrt{15}}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
13	$P_2^1\sqrt{2}Re(Y_1^1)$	$rac{3}{\sqrt{5}}h_{\perp}h_0\cos\delta_{\perp}$
14	$P_2^1\sqrt{2}Im(Y_1^1)$	$-\frac{3}{\sqrt{5}}h_{\parallel}h_0\sin\delta_{\parallel}$

4-d rate expression

• Generic amplitude with complex \mathcal{H}_i 's for $\overline{B} \to D^* (\to D\pi) \ell^- \overline{\nu}_{\ell}$:

$$|\overline{\mathcal{M}}|^2 = \left|\sum_{\lambda \in \{0,\pm 1\}} \sqrt{3} \mathcal{H}_{\lambda} d_{\lambda,0}(\theta_V) d^1_{\lambda,-1}(\theta_l) e^{i\lambda\chi}\right|^2$$

• Expanding this out, leads to:

$$\frac{d\Gamma}{dq^2 d\Omega} = \frac{\sqrt{8\pi} |V_{cb}|^2 \eta_{\rm EW}^2 G_F^2 \mathcal{B}^{D^* \to D\pi}}{3m_B^2 (4\pi)^4} \left\{ \sum_{i=1}^{14} f_i(\Omega) \Gamma_i(q^2) \right\}$$

• If the \mathcal{H}_i 's are real, it boils $2H_0 \sin \theta_l \sin 2\theta_V \cos \chi \left(H_+(1 - \cos \theta_l) - H_-(1 + \cos \theta_l)\right)$ down to the usual expression: $+4H_0^2 \sin^2 \theta_l \cos^2 \theta_V + 2H_+H_- \sin^2 \theta_l \sin^2 \theta_V \cos 2\chi$

$$\times \frac{3}{8(4\pi)^4} G_F^2 \eta_{\rm EW}^2 |V_{cb}|^2 \frac{kq^2}{m_B^2} \mathcal{B}(D^* \to D\pi)$$

 $\frac{d\Gamma}{da^2 d\Omega} = \left[\left(H_+^2 (1 - \cos \theta_l)^2 + H_-^2 (1 + \cos \theta_l)^2 \right) \sin^2 \theta_V + \right]$

Biplab Dey

 $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ angular analysis

Sept 23rd, 2020 19 / 19

Backup

BSemiExclAdd skim

- Charmful seed $S \in \{D^{(*)0}, D^{(*)+}, D_s^{(*)+}, J/\psi\}$ and charmless $Y = n_1 \pi^{\pm} + n_2 K^{\pm} + n_3 K_S^0 + n_4 \pi^0$,
- Hadronic B_{tag} reconstruction: 2968 modes compared to 651 in BABAR-09 $D\ell \overline{\nu}_{\ell}$ tagged analysis.
- Charmful seed $S \in \{D^{(*)0}, D^{(*)+}, D_s^{(*)+}, J/\psi\}$ and charmless $Y = n_1 \pi^{\pm} + n_2 K^{\pm} + n_3 K_S^0 + n_4 \pi^0$,
- Purity cut removed.
- In the e^+e^- rest frame:

$$\Delta E = E_{\text{tag}} - \sqrt{s/2}$$
$$m_{\text{ES}} = \sqrt{s/4 - |\vec{p}_{\text{tag}}|^2}$$

• Skim-level tag-side requirement: $m_{\rm ES} > 5.27$ GeV, $|\Delta E| < 72$ MeV.

Biplab Dey

Signal side reconstruction and MC samples

- Full exclusive event topology reconstructed. No additional charged tracks. Final *BABAR* ultimate PID selectors for $\{e, \mu, \pi, K, \pi^0\}$
- Leptons: $|\vec{p}_{lab}| > 200$ and 300 MeV for e and μ . $\theta^{\ell}_{lab} \in (0.4, 2.6)$ fiducial cut. Brem-recovery for e.
- For a given event all $\{D^0, D^{\pm}, D^{*0}, D^{*\pm}, +\text{charmless}\}\ell$ combinations sought in disjoint channels. Helps cleaning up the "specific" SL backgrounds.
- MC samples:
 - Generic $B\overline{B}$ MC: FF's and BF's reweighted to PDG. Used for background studies/estimation.
 - FLATQ2 MC: tag-side same as in generic MC. Signal-side generated flat in $dq^2 d\Omega$ for acceptance calculation in the angular analysis.

The 12 individual $D^*(\to D\pi)\ell$ modes

- E_{extra} : additional good photons not used in the reconstruction.
- Only 3 cleanest D^0 modes used. Cuts on E_{extra} and CL from TreeFit.

Particle	D^0 Decay mode	Mode #	Cuts
	$K^{-}\pi^{+}$	1	$E_{extra} < 0.5 \; GeV, \; CL > 0.001$
$D^{*0} \to D^0 \pi^0$	$K^-\pi^+\pi^0$	2	$E_{extra} < 0.4$ GeV, $CL > 0.01$
	$K^-\pi^+\pi^-\pi^+$	3	$E_{extra} < 0.4$ GeV, $CL > 0.01$
	$K^{-}\pi^{+}$	4	$E_{extra} < 0.6$ GeV, $CL > 10^{-6}$
$D^{*+} \rightarrow D^0 \pi^+$	$K^-\pi^+\pi^0$	5	$E_{extra} < 0.6$ GeV, $CL > 10^{-6}$
	$K^-\pi^+\pi^-\pi^+$	6	$E_{extra} < 0.6$ GeV, CL $> 10^{-6}$

• 6 D^* modes \Rightarrow 12 $D^*\ell$ modes.

- Truth-matching criterion: reconstructed and generated mode must match.
- Each mode has different acceptance/backgrounds. Analysed independently and combined at the end.
- Quite different from BABAR $R(D^{(*)})$ analysis (many modes lumped together) Biplab Dey $\overline{B} \rightarrow D^* \ell^- \overline{\nu}_\ell$ angular analysis Sept 23rd, 2020 19 / 19

Final mode-wise statistics

• Due to low tagging efficiency, limited MC statistics is critical.

$[D]\pi e^\pm$ mode	$N_{\rm tot}$	$N_{\rm bkgd}$	$N_{\rm sim}$
$[K^{-}\pi^{+}]\pi^{0}e^{\pm}$	486	15	14396
$[K^{-}\pi^{+}\pi^{0}]\pi^{0}e^{\pm}$	547	19	17806
$[K^{-}\pi^{+}\pi^{-}\pi^{+}]\pi^{0}e^{\pm}$	350	13	3410
$[K^{-}\pi^{+}]\pi^{+}e^{\pm}$	418	5	3990
$[K^{-}\pi^{+}\pi^{0}]\pi^{+}e^{\pm}$	801	14	7795
$[K^{-}\pi^{+}\pi^{-}\pi^{+}]\pi^{+}e^{\pm}$	453	8	4472
$[D]\pi\mu^\pm$ mode	$N_{\rm tot}$	$N_{\rm bkgd}$	$N_{\rm acc}$
$[K^{-}\pi^{+}]\pi^{0}\mu^{\pm}$	442	18	14893
$[K^{-}\pi^{+}\pi^{0}]\pi^{0}\mu^{\pm}$	574	29	18441
$[K^{-}\pi^{+}\pi^{-}\pi^{+}]\pi^{0}\mu^{\pm}$	395	16	3577
$[K^{-}\pi^{+}]\pi^{+}\mu^{\pm}$	417	10	4171
$[K^{-}\pi^{+}\pi^{0}]\pi^{+}\mu^{\pm}$	768	22	7838
$[K^{-}\pi^{+}\pi^{-}\pi^{+}]\pi^{+}\mu^{\pm}$	461	11	4446

• Final cut: |U| < 90 MeV.

- $N_{\rm tot} = 6112$, $N_{\rm bkgd} \sim 180$ over all 12 modes.
- Clean enough that background is a *systematic* from generic $B\bar{B}$ MC.
- No additional signal-background separation required.

Biplab Dey

"Model-independent" FF fits: pseudoscalars

- Pseudoscalar cases: z-expansion fits for the single $f_+(q^2)$ FF from both w/ and w/o hadronic tagging at *B*-factories.
- Rate $\propto \sin^2 \theta_\ell |f_+^2(q^2)|$ factorizes \Rightarrow effectively 1d analysis in q^2 .
- Reliable theory inputs also exist:
 - $\overline{B} \to \pi \ell^- \overline{\nu}_{\ell}$: both LCSR (large-recoil) and Lattice (low-recoil)
 - $\overline{B} \rightarrow D\ell^- \overline{\nu}_{\ell}$: non-zero recoil Lattice data from both MILC (1503.07237) and HPQCD (1505.03925)
- Latest Belle hadronic tagged results: $\overline{B} \to \pi \ell^- \overline{\nu}_\ell$ (1306.2781) and $\overline{B} \to D \ell^- \overline{\nu}_\ell$ (1510.03657).

"Model-independent" FF fits: vector mesons

• Vector meson cases much more difficult than pseduoscalars:

- Three FF's that require a full 4-d amplitude analysis to disentangle.
- Charmless $\{\rho, \omega\}$: broad resonances and difficult for both LCSR and Lattice. ρ can have significant $\pi\pi$ S-wave. Plus ρ - ω mixing.
- Charmful D^* : published Lattice data only at w = 1 yet. LCSR at large recoil unreliable for heavy D^* . HQET framework helps, though.
- Long time goal at *BABA*R. But hard, analysis-wise as well as little theory guidance on the QCD input in the *z*-expansion (till pre-2017). BGL papers for $B \rightarrow D^*$ were pre-2000.
- Grinstein $B \rightarrow D^*$ paper in 2017 reinvigorated the discussion. Much follow-up theory activity by Gambino/Ligeti/Lattice \Rightarrow very helpful!

Backup

BGL: optimal t_0 and unitarity conditions

• Nominal choice (CLN): $t_0 = t_-$ • Optimal choice: $t_0^{\text{opt}} = t_+ - \sqrt{t_+(t_+ - t_-)}$

• t_0^{opt} approximately halves the |z| range, for better convergence.

• The BGL coefficients must satisfy the unitarity constraints:

$$\sum_{n=0}^{N} |a_n^f|^2 + |a_n^{F_1}|^2 \equiv S_{1^+} \le 1, \quad \sum_{n=0}^{N} |a_n^g|^2 \equiv S_{1^-} \le 1$$

• In reality, far from saturation: $S \sim \mathcal{O}(10^{-2})$.

Biplab Dey

$|V_{cb}|$ tension and BGL fits: ICHEP'18

• ICHEP'18 plenary claim:

• But life is not so simple...

Backup

HQET implications from these BGL fits

• Ab initio, huge HQET breaking from BGL fits:

- HQS: FF ratios $R_{1,2} \rightarrow 1.$
- R₁ from Gambino looks quite weird
- LCSR+unitarity usage!

 HQET works pretty well in heavy quark spectroscopy, lifetimes etc. So, quite surprising, if true...

Biplab Dey

Sept 23rd, 2020 19 / 19

Preliminary non-zero recoil Lattice data

• Preliminary lattice data seems consistent with $h_{A_1}, h_V, R_1 \sim \mathcal{O}(1)$ expectation from HQET. Lattice uncertainties on these $\sim 3\%$.

- $R_1(w)$ flat-ish and $R_1(1) \sim 1.3$
- MILC/JLQCD have different systematics and ensembles. Need both for confirmation.
- R₂ uncertainties appear to be large in Lattice.

Backup

Preliminary non-zero recoil Lattice data (cntd.)

Biplab Dey

Backup

BABAR BGL results – FF shapes (cntd.)

- New LCSR data at large negative q^2 values from 1811.00983
- BABAR BGL "not inconsistent" with these LCSR data. NB: BABAR fits did not include any LCSR/HQET inputs.
- Curvature of A_1 from CLN-WA seems to change at $q^2 \rightarrow -15 \text{ GeV}^2$.

Ambiguities in 'product of four 1-d' fits?

• Angle distributions: barred terms, q^2 -info integrated away. Very little sensitivity to q^2 -dependence.

$$\frac{d\Gamma}{d\chi} \sim \left[\left(\overline{|H_+|^2} + \overline{|H_-|^2} + \overline{|H_0|^2} \right) - \overline{|H_+H_-|} \cos 2\chi \right]$$
$$\frac{d\Gamma}{d\cos\theta_\ell} \sim \left[(1 - \cos\theta_\ell)^2 \overline{|H_+|^2} + (1 - \cos\theta_\ell)^2 \overline{|H_-|^2} + 2\sin^2\theta_l \overline{|H_0|^2} \right]$$
$$\frac{d\Gamma}{d\cos\theta_V} \sim \left[\sin^2\theta_V \left(\overline{|H_+|^2} + \overline{|H_-|^2} \right) + 2\cos^2\theta_V \overline{|H_0|^2} \right]$$

• $d\Gamma/dw$ has info only on sum of FF squares:

$$\frac{d\Gamma}{dw} \sim \sqrt{w^2 - 1}(1 - 2wr + r^2) \left[|H_+|^2 + |H_-|^2 + |H_0|^2 \right]$$

- Can the individual FF's be extracted unambiguously in a fit to product of four 1-d projections?
- BABAR-BGL'19 instead employs a full 4-d fit.

Comparisons w/ Belle-17 data

- Attempted to add unpublished Belle'17 data as a Gaussian constraint to the overall BABAR NLL.
- Fit significantly deviating from *BABAR*-only if entire 40×40 cov. matrix used. Single set of 10×10 cov. matrix ok \Rightarrow not used in the end.
- Note: only mild diff. in 1-d projections between CLN-WA and BABAR-BGL.

Biplab Dey

 $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ angular analysis

Sept 23rd, 2020 19 / 19

Data/MC comparisons: BABAR

• FLATQ2 accepted MC (incl. eff. effects) weighted by the BGL results should match the data in all multi-dim. distributions.

Lattice'19 MILC slide

BABAR-BGL semi-tauonic predictions

- We mostly follow the Gambino'17 prescriptions with $\sim 15\%$ uncertainty on the HQET estimation of $P_1(1)$ (scalar FF).
- At maximum recoil, instead of LCSR, we use the BABAR-BGL prediction from $F_1(w_{\rm max})$.

$R(D^*)$ Description	Value
HFLAV'19 WA exp.	0.295 ± 0.014
Fajfer'12 CLN	0.252 ± 0.003
Ligeti'17 BGL	0.257 ± 0.003
Gambino'17 BGL	0.260 ± 0.008
HFLAV'19 SM avg.	$0.258 \pm \textbf{0.005}$
BABAR BGL	0.253 ± 0.005

- $\sim 2.8\sigma$ dev. in $R(D^*)$ w/ BABAR-BGL.
- Predictions stable, but disagreement on the errors.
- Effect of the FF's on exp. efficiencies?

• P_{τ} : -0.483 ± 0.027 (BABAR-BGL), -0.38 ± 0.51^{+0.21}_{-0.16} (Belle'17)

• $F_L^{D^*}$: $\underbrace{+0.454 \pm 0.011}_{\text{predictions}}$ (BABAR-BGL), $\underbrace{+0.60 \pm 0.08 \pm 0.035}_{\text{measurements}}$ (Belle'19)

Biplab Dey