

$\begin{array}{c} \text{Measurement of } b \rightarrow u \,\ell v_{\ell} \\ \text{at Belle II} \end{array}$

Andrea Fodor McGill University

September 23th 2020

19th International Conference on B-Physics at Frontier Machines – BEAUTY 2020

online

Introduction

- Semileptonic decays of B mesons play a critical role in the determination of the CKM quarkmixing matrix elements $|V_{cb}|$ and $|V_{ub}|$
- $b \rightarrow u \,\ell \nu$ measurements important for measuring CKM matrix element V_{ub}
- Previous results show tension between inclusive and exclusive measurement of V_{ub} matrix element
- Challenging measurements because of the missing neutrino and dominant $b \to c \ell \nu$ background

Overview

- Belle II experiment
- Tagged vs untagged analysis
- Untagged inclusive $B \rightarrow X_u e \nu_e$
- Tagged exclusive $B \rightarrow \pi \ell \nu_{\ell}$
- Prospects for $b \rightarrow u$ measurements at Belle II

Belle II experiment and SuperKEKB

Belle II Luminosity

• World record luminosity (June 2020) $\approx 2.4 \times 10^{34} \ cm^{-2}s^{-1}$

Results presented here use 34.6 fb⁻¹ of reprocessed data

Belle I

Tagged vs untagged analysis

- B mesons produced almost at rest in the CoM frame
- Several approaches in the analysis depending on the treatment of the companion B meson, **B**_{tag}

- **Untagged reconstruction** signal reconstruction without full B_{tag} reconstruction
- **Tagged approach** reconstruction of the B_{tag} first using semileptonic or hadronic decay modes and attributing the remaining detected depositions to the B_{sig}
- Full Event Interpretation
 - implemented by Belle II
 - · uses Machine Learning and reconstructs B_{tag} from more than 200 different decay modes, improving the B_{tag} reconstruction efficiency;
 - · enables precise determination of the energy carried by undetected neutrinos

Untagged inclusive $B \rightarrow X_u e \nu_e$

Untagged inclusive $B \rightarrow X_u e v_e$

- The aim is to **'rediscover'** $B \rightarrow X_u \ell \nu$ decays via an **inclusive** analysis approach: *only the outgoing lepton is selected*
- Using the untagged analysis approach, the companion B meson is not reconstructed
- Looking in the endpoint region of the lepton momentum in the CM frame to avoid the dominant background from the decay $B \rightarrow X_c \ell v$

Inclusive $B \rightarrow X_u e \nu_e$

- Analysis approach:
 - One electron is identified using PID algorithms
 - Continuum backgrounds are suppressed using MVA trained with event shape variables

 $q\bar{q}$ events are more jet-like

Inclusive $B \rightarrow X_{\mu} e \nu_{e}$

- Analysis approach:
 - One electron is identified using PID algorithms •
 - Continuum backgrounds are suppressed using • MVA trained with event shape variables
 - Fit was performed on off-resonance data to • estimate continuum contributions
 - Backgrounds from BB decays are estimated Belle II using a MC template fit Preliminary

N_{data} – N_{fit} N_{data}

Inclusive $B \rightarrow X_u e \nu_e$

- Continuum and other BB contributions are subtracted in the endpoint region of the electron momentum [2.1, 2.8] GeV
- Observed $B \rightarrow X_u e v_e$ excess in data (> 3σ)
- Systematics from electron PID, fitting, $B \rightarrow X_c e v_e$ BF

Tagged exclusive $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$

arXiv:2008.06096

Full Event Interpretation (FEI)

Neutral

Clusters

 K_L^0

p

Keck, T. et al. Comput Softw Big Sci (2019) 3: 6.

Displaced

Vertices

 K^+

Tracks

U

- Exclusive reconstruction of B meson in hadronic and semileptonic decay modes
- Multivariate algorithm with a hierarchical approach
- Classifier value, p_{tag} , discriminates correctly reconstructed tag-sides from background
- Infer momentum and direction of signal B candidate:

$$p_{sig} \equiv \left(E_{B_{sig}}, \vec{p}_{B_{sig}}\right) = \left(\frac{m(\Upsilon(4S))}{2}, -\vec{p}_{B_{tag}}\right)$$

Ideal for decays with neutrinos, missing energy signatures

arXiv:2008.08819

Tagged exclusive B^0 -

14

 $B_{\rm sig}$

π

- FEI hadronic tagging used to identify B_{tag}
- Oppositely charged *muon* or *electron* candidate, and a *pion* candidate are identified using PID algorithms
- Fox-Wolfram R2 moment is used for continuum suppression
- Yield is extracted using the distribution of the square of the missing mass:

$$M_{miss}^2 \equiv p_{miss}^2$$
$$p_{miss} \equiv (E_{miss}, \vec{p}_{miss}) = p_{B_{sig}} - p_Y$$

- Analysis was performed blinded in the signal region $M_{miss}^2 < 1 \text{ GeV}^2/c^4$
- Result in agreement with world average; observed signal significance 5.69 σ

Prospects for $b \rightarrow u$ measurements at Belle II

Prospects for $b \rightarrow u$ measurements at Belle II

Belle II MC13

 $B^0 \rightarrow \pi^{\pm} e^{\mp} v$

Significant improvement is expected with higher luminosities and better understanding of the

detector's performance. Belle II MC13 $B^0 \rightarrow \pi^{\pm} e^{\mp} v$ 1.0 ×10⁻⁵ $\times 10^4$ $B \rightarrow \pi \ell \nu$ untagged measurement Events / Bin D^{*} l v ΔBF Δq^2 Signal MC Comb. signal Other BB Continuum 0.8 Signal shape

Extract ΔBF in five q^2 bins Extract |Vub| from a form factor fit to the partial branching fraction spectrum

 $\mathsf{BF} \propto |V_{ub}|^2 f(q^2)$

 $V_{\mu b}$ precision to be improved to 3% with the full 50 ab⁻¹ dataset

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

PTEP 2019 (2019) no. 12, 123C01.

Summary

- Belle II has an ideal environment for semileptonic B meson decays
- $B \rightarrow X_u e v_e$ mode was rediscovered, showing evidence of non-zero V_{ub} in the electron momentum endpoint; muon mode under study
- $B^0 \rightarrow \pi^+ \ell \nu$ mode was rediscovered with measured $\mathcal{B} = (1.58 \pm 0.43_{stat} \pm 0.07_{sys}) \times 10^{-4}$, in agreement with previous measurements
- More $b \rightarrow u$ measurements to come with increased luminosity

