Semileptonic b decays at LHCb

Svende Braun on behalf of the LHCb collaboration

University of Maryland

BEAUTY 2020 September 21-24, 2020

S. Braun (University of Maryland)

Semileptonic b decays at LHCb

Semileptonic b decays

Advantages

- Large data samples: \sim 10% of all B-decays
- Theoretically clean: hadronic and leptonic part factorizes
 → only 1 hadronic current parametrized by form factors

Challenges

- Partially reconstructed decays due to neutrino
- Large bkg contributions
- Huge simulation samples needed

Most recent measurements covered today:

- Measurement of $|V_{cb}|$ with $B_s^0 o D_s^{(*)-} \mu^+
 u_\mu$ Phys. Rev. D101 072004
- Measurement of the shape of the $B_s^0 \to D_s^{*-} \mu^+ \nu_\mu$ differential distribution <u>arXiv:2003.08453</u>

Motivation

- Precisely measure CKM matrix elements
 → fundamental SM parameters
- Discrepancy between exclusive and inclusive $|V_{cb}|$ measurements: $\approx 3\sigma$ tension \rightarrow new complementary measurements needed
- Exclusive determinations rely on form factors (FF)
 - Nonpertubative QCD calculations: Lattice QCD (LQCD) or QCD sum rules
 - Extracted in experimental measurements from data
 - B_s^0 decays are advantageous compared to $B^{0/+}$
 - Easier to calculate in LQCD due to heavier spectator quark ightarrow more precise predictions
 - Experimentally less backgrounds contamination (D_s^{**} feed down)

$B_s ightarrow D_s^{(*)} \mu u$ form factors

- Functions of di-lepton momentum transfer squared q^2 or hadron recoil w: $w = \frac{m_B + m_D q^2}{2m_B m_D}$
- Differential decay rates: $\frac{\mathrm{d}\Gamma(B_s \to D_s \mu \nu)}{\mathrm{d}w} = \frac{G_F^2 m_{D_s^3}}{48\pi^3} (m_{B_s} + m_{D_s})^2 \eta_{EW}^2 |V_{cb}|^2 (w^2 - 1)^{3/2} \frac{|\mathcal{G}(w)|^2}{\varphi_{cb}}$

$$\frac{\mathrm{d}^{4}\Gamma(B_{s}\to D_{s}^{*}\mu^{+}\nu_{\mu})}{\mathrm{d}w\mathrm{d}\cos\theta_{\mu}\mathrm{d}\cos\theta_{D}\mathrm{d}\chi} = \frac{3m_{B_{s}}^{3}m_{D_{s}^{*}}^{2}G_{F}^{2}}{16(4\pi)^{4}}\eta_{EW}^{2}|V_{cb}|^{2}\underbrace{|\mathcal{A}(\mathbf{w},\theta_{\mu},\theta_{D},\chi)|^{2}}_{\hookrightarrow 3\;\mathrm{FF}:\;h_{A1}(\mathbf{w}),R_{1}(\mathbf{w}),R_{2}(\mathbf{w})}$$

- At zero recoil point $(q_{max}^2, w = 1)$ FF can be computed precisely with LQCD, whereas experimental measurements done at different q^2 range
 - \rightarrow needs extrapolation, done through different FF parametrisations:
 - CLN (Caprini-Lellouch-Neubert) Nucl. Phys. B530 (1998) 153
 - BGL (Boyd-Grinstein-Lebed) Phys. Rev. Lett. 74 (1995) 4603
 → so far no significant differences observed

Measurement of $|V_{cb}|$ with $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

Phys. Rev. D101 072004

Measurement strategy

Phys. Rev. D101 072004

- Uses full Run 1 data (1 fb⁻¹ @ 7 TeV + 2 fb⁻¹ @ 8 TeV)
- Both decays $B^0_s o D^{(*)-}_s \mu^+
 u_\mu$ are reconstructed through $D_s(o [KK]_\phi \pi) \mu$
- Normalized to B⁰ → D^{(*)−}μ⁺ν_μ as kinematically similar decay
 → reduce systematic uncertainties, but needs as external input hadronization fraction f_s/f_d and
 measured branching fractions
- Measure $\mathcal{R}^{(*)} = \frac{\mathcal{B}(B_0^0 \to D_s^{(*)-} \mu^+ \nu_{\mu})}{\mathcal{B}(B^0 \to D^{(*)-} \mu^+ \nu_{\mu})} \to \text{extract } |V_{cb}|$ and branching fraction from that
- New idea: use variable $p_{\perp}(D_s^-)$ which is highly correlated with w and fully reconstructible

Signal and normalization fits

Phys. Rev. D101 072004

Perform 2D template fit to p⊥(D_s) and corrected mass

$$m_{corr}=\sqrt{m^2(D_{s}\mu)+p_{\perp}^2(D_{s}\mu)+p_{\perp}(D_{s}\mu)}$$

 \rightarrow allows to discriminate between signal and different backgrounds

- Signal templates depend on form factors \rightarrow recalculated at each fit iteration \rightarrow fit also sensitive to FF parameters
 - \rightarrow use both parametrisations CLN and BGL
- simultaneous fit to signal and normalisation decays

Signal fit results

Signal fit using CLN parametrisation:

Phys. Rev. D101 072004

Results

- $|V_{cb}|_{CLN} = (41.6 \pm 0.6(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$
- $|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$ \rightarrow both are in agreement with each other \rightarrow confirms trend that parametrisation not responsible for

inclusive vs exclusive disagreements

 \rightarrow Both results are in agreement with previous exclusive and inclusive $|V_{cb}|$ determinations

\rightarrow First exclusive $|V_{cb}|$ measurement at hadron collider and using $B_{\rm s}$ mesons

Exclusive branching fractions

•
$$\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu) = (2.49 \pm 0.12(stat) \pm 0.14(syst) \pm 0.16(ext) \times 10^{-2})$$

•
$$\mathcal{B}(B_s^0 \to D_s^{*-} \mu^+ \nu_\mu) = (5.38 \pm 0.25(\textit{stat}) \pm 0.46(\textit{syst}) \pm 0.30(\textit{ext}) \times 10^{-2})$$

 \rightarrow dominant uncertainty comes from external inputs f_s/f_d , then $D_s \rightarrow KK\pi$ Dalitz structure

Phys. Rev. D101 072004

Measurement of the shape of the $B^0_s o D^{*-}_s \mu^+
u_\mu$ differential distribution

arXiv:2003.08453

Measurement strategy

arXiv:2003.08453

- Uses Run 2 data from 2016 (1.7 fb⁻¹ @ 13 TeV)
- Aim to measure $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ FF more precisely using CLN and BGL parametrisations
- Reconstruct $B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu}$ through $D_s^{*-} \to D_s^- \gamma$ $D_s^- \to \phi(\to K^+ K^-) \pi D_s^- \to K^{*0}(\to K^+ \pi^-) K^ \to$ Reconstruct soft photon in cone around D_s^- flight

•
$$D_{\rm s}^- o \phi (o K^+ K^-) \pi^-$$

•
$$D^-_s
ightarrow K^{*0} (
ightarrow K^+ \pi^-) K^-$$

 \rightarrow Reconstruct soft photon in cone around D_{c}^{-} flight direction

 \rightarrow fit to D_s^{*-} mass removes background

- Measure differential decay rate as function of w, integrate out angles due to small FF dependence
 - \rightarrow template fit to corrected mass in bins of w using simulation
- Correct raw yields for detector resolution (unfolding), selection and reconstruction efficiencies \rightarrow fit resulting spectrum with CLN and BGL parametrisations

Signal fits

arXiv:2003.08453

- Extended binned maximum-likelihood fit in 7 bins of w to extract raw yields $\rightarrow w$ binning chosen to have same amount of signal yield
- *w* known up to quadratic ambiguity \rightarrow use MVA regression method <u>JHEP 02 (2017) 021</u> to select solution with 70% purity
- Backgrounds coming from semitaounic B_s decays, double charm decays, feed-down from higher excited D_s^{-} and combinatorial background from SS data

Form factor Fit

arXiv:2003.08453

- Measured *w* spectrum must be unfolded and corrected using bin-by-bin efficiencies for FF fit → CLN and BGL parametrisations consistent with each other and data
- Leading FF results:
 - CLN: $\rho^2 = 1.16 \pm 0.05(stat) \pm 0.07(syst)$
 - BGL: $a_1^f = -0.002 \pm 0.034(stat) \pm 0.046(syst),$ $a_2^f = 0.93^{+0.05}_{-0.20}(stat)^{+0.06}_{-0.38}(syst)$

 \rightarrow systematically limited measurement, mainly from simulation statistics

 \rightarrow Values agree with HFLAV world average from $B^0 \rightarrow D^{*+} \mu^- \bar{\nu}_\mu$

 \rightarrow Consistent results with previously discussed analysis Phys. Rev. D101 072004

Conclusion

- Two most recent semileptonic measurements from LHCb on *B_s* meson decays
- First exclusive |V_{cb}| measurement at hadron collider and using B_s mesons
 - Result in agreement with previous exclusive and inclusive measurements from B^0 and B^+ decays
 - measured branching fraction of $B^0_s o D^{(*)-}_s \mu^+
 u_\mu$ for the first time
 - ightarrow Techniques exported to different decay channels can lead to more precise $|V_{cb}|$ values
- First measurement of the shape of the $B_s^0 o D_s^{*-} \mu^+
 u_\mu$ differential decay rate
 - · Data consistent with both CLN and BGL FF parametrisations
 - Obtained FF values in agreement with world-average from HFLAV assuming SU(3) symmetry and with previous analysis
 - \rightarrow Paves the way towards future $R(D_s^{(*)})$ measurements

More semileptonic B_s results about to come $\rightarrow B_c$ decays are also being investigated

Thanks for your attention!

You can also contact me via svende.braun@cern.ch

CLN parametrisation

based on Heavy Quark Effective Theory \rightarrow includes more constraints: dispersion relations and reinforced unitarity bounds \rightarrow simplified FF expression

for vector case:

$$\begin{split} h_{A1}(w) &= h_{A1}(1) [1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3] \\ R_1(w) &= R_1(1) - 0.12(w-1) + 0.05(w-1)^2 \\ R_2(w) &= R_2(1) - 0.11(w-1) - 0.06(w-1)^2 \end{split}$$

with $z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$

 \rightarrow form factors depend on 4 parameters: ρ^2 , $R_1(1)$, $R_2(1)$ and $h_{A1}(1)$, $h_{A1}(1)$ taken from LQCD

for scalar case:

$$\mathcal{G}(z) = \mathcal{G}(0)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$$

 \rightarrow form factors expressed in terms of ρ^2 and $\mathcal{G}(0)$, $\mathcal{G}(0)$ taken from LQCD

BGL parametrisation

follows from more general arguments based on dispersion relations, analyticity and crossing symmetry, form factors expressed as series expansion:

in vector case 3 series:

$$f(z) = \frac{1}{P_{1+}(z)\phi_{f}(z)}\sum_{i=0}^{N}b_{i}z^{i}, g(z) = \frac{1}{P_{1-}(z)\phi_{g}(z)}\sum_{i=0}^{N}a_{i}z^{i}, \mathcal{F}_{1}(z) = \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_{1}}(z)}\sum_{i=0}^{N}c_{i}z^{i}$$

for 3 FF:

$$h_{A1}(w) = \frac{f(w)}{\sqrt{m_B m_{D^*}(1+w)}}, R_1(w) = (1+w)m_B m_{D^*} \frac{g(w)}{f(w)}, R_2(w) = \frac{w-r}{w-1} - \frac{\mathcal{F}_1(w)}{m_B(w-1)f(w)}$$

with $r = m_{D^*}/m_B$

in scalar case 1 series for 1 FF:

$$f_+(z) = \frac{1}{P_1 - (z)\phi(z)} \sum_{i=0}^N d_i z^i, |\mathcal{G}(z)|^2 = \frac{4r}{(1+r)^2} |f_+(z)|^2$$
 with $r = m_D/m_B$

 $P_{1^{\pm}}(z)$ Blaschke factors and $\phi_{f,g,\mathcal{F}_1}(z)$ so-called outer functions

 \rightarrow coefficients of series a_i, b_i, c_i, d_i to be determined, either from data or calculations, bound by unitarity constraints, with small ranges for *z* series converge fast

S. Braun (University of Maryland)

Semileptonic b decays at LHCb

Selection for Phys. Rev. D101 072004

- Selection closely follows paper Phys. Rev. Lett. 119 101801
- Apply vetoes to suppress misID bkg:
 - $B_{\rm s} o \psi(o \mu^+\mu^-)\phi(o K^+K^-)$ where muon misid. as kaon
 - $\Lambda_b \to \Lambda_c (\to p K^- \pi^+) \mu \nu X$ where the proton is mis-identified as a kaon or a pion
 - $B^0_{(s)} \rightarrow D^-_{(s)} \pi^+$ with pion is mis-identified as muon
- Suppress partially reconstructed background via $p_{\perp}(D_s) < 1.5 + 1.1 \times (m_{corr} 4.5))$

 $\rightarrow 2.72 x 10^5$ signal and $0.82 x 10^5$ normalization channel candidates remain

remaining background from D^{**}_s feed-down such as D^{*}_{s0}(2317)⁻, D_{s1}(2460)⁻, semitauonic B_s decays, double charm decays

ightarrow very similar shape therefore merged together as 'physics background' in signal fit

Complete fit results for Phys. Rev. D101 072004

CLN parametrization

BGL parametrization

Parameter	Value
$ V_{cb} $ [10 ⁻³]	$41.4 \pm 0.6 (\text{stat}) \pm 1.2 (\text{ext})$
$\mathcal{G}(0)$	$1.102 \pm 0.034 (\text{stat}) \pm 0.004 (\text{ext})$
$\rho^{2}(D_{s}^{-})$	$1.27 \pm 0.05 \text{ (stat)} \pm 0.00 \text{ (ext)}$
$\rho^2(D_s^{*-})$	$1.23 \pm 0.17 \text{ (stat)} \pm 0.01 \text{ (ext)}$
$R_1(1)$	$1.34 \pm 0.25 \text{ (stat)} \pm 0.02 \text{ (ext)}$
$R_{2}(1)$	$0.83 \pm 0.16 \text{ (stat)} \pm 0.01 \text{ (ext)}$

meter		١	/alue	
$[10^{-3}]$	42.3	± 0.8	$(stat) \pm 1.2$	(ext)
	1.097	$\pm \ 0.034$	$(stat) \pm 0.001$	(ext)
	-0.017	$\pm \ 0.007$	$(stat) \pm 0.001$	(ext)
	-0.26	± 0.05	$(stat) \pm 0.00$	(ext)
	-0.06	± 0.07	$(stat) \pm 0.01$	(ext)
	0.037	$\pm \ 0.009$	$(stat) \pm 0.001$	(ext)
	0.28	± 0.26	$(stat) \pm 0.08$	(ext)
	0.0031	± 0.0022	$2 (\text{stat}) \pm 0.0006$	$\delta(\text{ext})$
	meter [10 ⁻³]	$\begin{array}{c} \hline \text{meter} \\ \hline 10^{-3} & 42.3 \\ & 1.097 \\ & -0.017 \\ & -0.26 \\ & -0.06 \\ & 0.037 \\ & 0.28 \\ & 0.0031 \end{array}$	$\begin{array}{c c} & & & & & \\ \hline \\ [10^{-3}] & 42.3 & \pm 0.8 \\ & 1.097 & \pm 0.034 \\ & -0.017 & \pm 0.037 \\ & -0.26 & \pm 0.05 \\ & -0.06 & \pm 0.07 \\ & 0.037 & \pm 0.009 \\ & 0.28 & \pm 0.26 \\ & 0.0031 \pm 0.0022 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

external inputs:

experiment

ŀ	h	൧	ი	r	v
ι		e	υ	L	y

Parameter	Value	Parameter	Value
$\frac{f_s/f_d \times \mathcal{B}(D_s^- \to K^- K^+ \pi^-) \times \tau \text{ [ps]}}{\mathcal{B}(D^- \to K^- K^+ \pi^-)}$	$\begin{array}{c} 0.0191 \pm 0.0008 \\ 0.00993 \pm 0.00024 \end{array}$	$\eta_{\rm EW} \\ h_{A_1}(1)$	$\begin{array}{c} 1.0066 \pm 0.0050 \\ 0.902 \pm 0.013 \end{array}$
$\mathcal{B}(D^{*-} \to D^{-}X)$ $\mathcal{B}(B^{0} \to D^{-}\mu^{+}\nu_{\mu})$ $\mathcal{B}(B^{0} \to D^{*-}\mu^{+}\nu_{\nu})$	0.323 ± 0.006 0.0231 ± 0.0010 0.0505 ± 0.0014	CLN param $\mathcal{G}(0)$ $\rho^2(D_s^-)$	etrization 1.07 ± 0.04 1.23 ± 0.05
$ \begin{array}{c} \overset{0}{\operatorname{Mass}} & \operatorname{mass} \left[\operatorname{GeV} / c^2 \right] \\ D_s^- & \operatorname{mass} \left[\operatorname{GeV} / c^2 \right] \\ D_s^{*-} & \operatorname{mass} \left[\operatorname{GeV} / c^2 \right] \end{array} $	$\begin{array}{c} 5.36688 \pm 0.00017 \\ 1.96834 \pm 0.00007 \\ 2.1122 \pm 0.0004 \end{array}$	BGL param $\mathcal{G}(0)$ d_1 d_2	etrization 1.07 ± 0.04 -0.012 ± 0.008 -0.24 ± 0.05

Systematic uncertainties for Phys. Rev. D101 072004

	Uncertainty															
Source	CLN parametrization				BGL parametrization											
	$ V_{cb} $ [10 ⁻³]	$\begin{array}{c} \rho^2(D_s^-) \\ [10^{-1}] \end{array}$	G(0) [10 ⁻²]	$\begin{array}{c} \rho^2(D_s^{\star-}) \\ [10^{-1}] \end{array}$	$R_1(1)$ [10 ⁻¹]	$R_2(1)$ [10 ⁻¹]	$ V_{cb} $ [10 ⁻³]	d_1 [10 ⁻²]	d_2 [10 ⁻¹]	G(0) [10 ⁻²]	$\begin{bmatrix} b_1 \\ [10^{-1}] \end{bmatrix}$	$\begin{bmatrix} c_1 \\ 10^{-3} \end{bmatrix}$	$\begin{bmatrix} a_0 \\ [10^{-2}] \end{bmatrix}$	a_1 [10 ⁻¹]	\mathcal{R} [10 ⁻¹]	\mathcal{R}^{*} [10 ⁻¹]
$f_s/f_d \times \mathcal{B}(D_s^- \rightarrow K^+K^-\pi^-)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.4
$\mathcal{B}(D^- \rightarrow K^-K^+\pi^-)$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.3
$\mathcal{B}(D^{*-} \rightarrow D^{-}X)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.3	-	0.2
$\mathcal{B}(B^0 \rightarrow D^- \mu^+ \nu_\mu)$	0.4	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.1	0.1	0.4	0.1	0.7	-	-
$\mathcal{B}(B^0 \rightarrow D^{*-}\mu^+\nu_{\mu})$	0.3	0.0	0.2	0.1	0.1	0.1	0.2	0.0	0.0	0.1	0.1	0.3	0.1	0.4	-	-
$m(B_s^0), m(D^{(*)-})$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
η_{EW}	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
$h_{A_1}(1)$	0.3	0.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.1	0.1	0.3	0.1	0.5	-	-
External inputs (ext)	1.2	0.0	0.4	0.1	0.2	0.1	1.2	0.1	0.0	0.1	0.1	0.6	0.1	0.8	0.5	0.5
$D^{(s)} \rightarrow K^+ K^- \pi^- \text{ model}$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4
Background	0.4	0.3	2.2	0.5	0.9	0.7	0.1	0.5	0.2	2.3	0.7	2.0	0.5	2.0	0.4	0.6
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.0	0.0
Corrections to simulation	0.0	0.0	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Form-factor parametrization	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	0.1
Experimental (syst)	0.9	0.3	2.2	0.5	0.9	0.7	0.9	0.5	0.2	2.3	0.7	2.1	0.5	2.0	0.6	0.7
Statistical (stat)	0.6	0.5	3.4	1.7	2.5	1.6	0.8	0.7	0.5	3.4	0.7	2.2	0.9	2.6	0.5	0.5

Complete fit results for arXiv:2003.08453

different fit results

CLN fit	
Unfolded fit Unfolded fit with massless leptons Folded fit	$\begin{split} \rho^2 &= 1.16 \pm 0.05 \pm 0.07 \\ \rho^2 &= 1.17 \pm 0.05 \pm 0.07 \\ \rho^2 &= 1.14 \pm 0.04 \pm 0.07 \end{split}$
BGL fit	
Unfolded fit	$a_1^f = -0.002 \pm 0.034 \pm 0.046 a_2^f = 0.93 \substack{+ 0.05 + 0.06 \\ - 0.20 - 0.38}$
Folded fit	$ a_1^f = 0.042 \pm 0.029 \pm 0.046 a_2^f = 0.93 \substack{+0.05 + 0.06 \\ -0.20 - 0.38} $

total efficiency dependence

cross check: data-MC comparisons after fit using fitted fractions

 \rightarrow MC describes angular distributions well!

Systematic uncertainties for arXiv:2003.08453

Source	$\sigma(\rho^2)$	$\sigma(a_1^t)$	$\sigma(a_2^f)$
Simulation sample size	0.053	0.036	+0.04 -0.35
Sample sizes for efficiencies and corrections	0.020	0.016	+0.02 - 0.16
SVD unfolding regularisation	0.008	0.004	_
Radiative corrections	0.004	-	-
Simulation FF parametrisation	0.007	0.005	-
Kinematic weights	0.024	0.013	-
Hardware-trigger efficiency	0.001	0.008	-
Software-trigger efficiency	0.004	0.002	-
D_s^- selection efficiency	-	0.008	-
D_s^{*-} weights	0.002	0.014	_
External parameters in fit	0.024	0.002	0.04
Total systematic uncertainty	0.068	0.046	$^{+0.06}_{-0.38}$
Statistical uncertainty	0.052	0.034	$^{+0.05}_{-0.20}$

LHCb Detector

JINST 3 S08005 (2008), Int. J. Mod. Phys. A 30, 1530022 (2015)

- VELO: primary and secondary vertex
- Tracking: momentum of charged particle
- RICHs: particle identification K^{\pm}, π^{\pm}

- MUON: trigger on high $p_{\mathrm{T}}~\mu^{\pm}$ & PID
- Calorimeter: ECAL and HCAL for γ , e^{\pm} and hadronic energy