Belle II: Charmonium, Λ_c , and X(3872) Family

Kiyoshi Tanida <tanida@post.j-parc.jp>

(Japan Atomic Energy Agency) @19th International Conference on B-Physics at Frontier Machines (BEAUTY 2020) 23 September 2020

Belle II: Charmonium, Λ_c, and X(3872) Family (+ bottomonium + some Belle results)

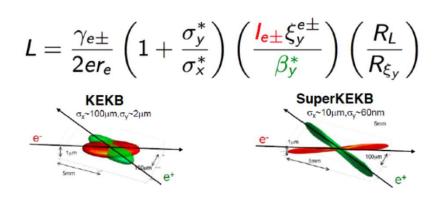
Kiyoshi Tanida <tanida@post.j-parc.jp>

(Japan Atomic Energy Agency) @19th International Conference on B-Physics at Frontier Machines (BEAUTY 2020) 23 September 2020

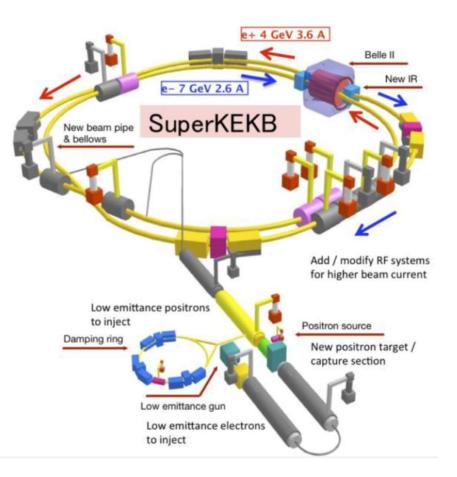
Hadron spectroscopy at e⁺e⁻ collider

• Small background

 $-e^+e^- \rightarrow Q\overline{Q}$ production is flavor blind. Only (charge)² matters.


- Missing mass spectroscopy is possible
 - Absolute branching fraction
 - Study of decays with missing particles (n, v, ...)
- Smaller production rate than hadron machines can be compensated by high luminosity

 e^+e^- machines are suitable for heavy hadrons!!


SuperKEKB and Belle II

Upgrade for SuperKEKB and Belle II to achieve $40x \text{ peak } \mathcal{L}$ under 20x bkgd

- Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

- ► First turns achieved Feb. 2016
- ► Beam-background studies ongoing

Goal: x50 more statistics than Belle

Belle II detector

Superconducting solenoid (1.5 T)

 K_L and μ detector

Electromagnetic calorimeter CsI(TI), waveform sampling

Tracking detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

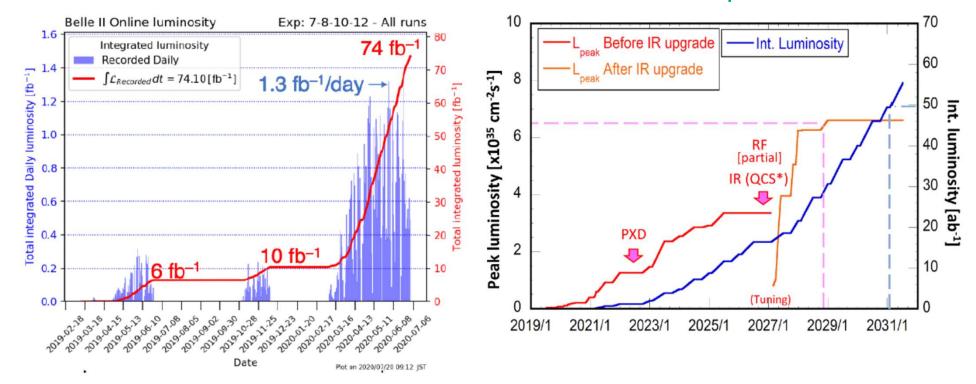
Silicon vertex d

- 1→2 layers DEPFET (pixel)
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background Resistive plate chamber (outer barrel) Scintillator + MPPC (inner 2 barrel layers, end-caps)

Particle ID detectors

TOP (Time-of-Propagation) counter (barrel)
 Aerogel RICH (forward end-cap)


Trigger and DAQ Max L1 rate: 0.5→30 kHz Pipeline readout

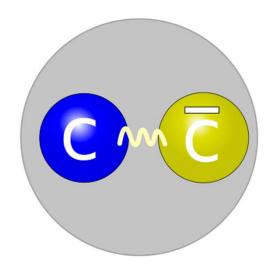
GRID computing

Belle II integrated luminosity

Achieved

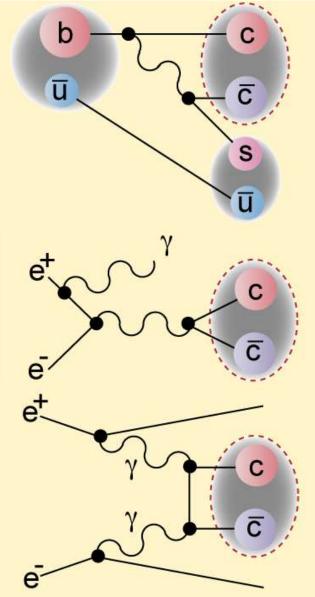
Prospect

- Instantaneous luminosity already exceeded Belle
- Integrated luminosity will exceed Belle by 2022
- Goal: 50 ab⁻¹ around 2031.

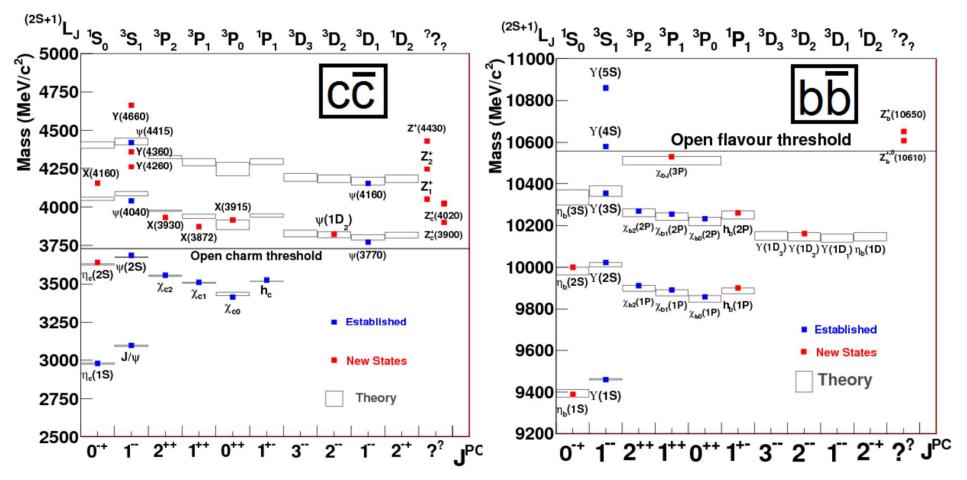

Quarkonia, including X(3872)

7

Quarkonium


- $Q\overline{Q}$ meson with a heavy quark (i.e., Q=c or b)
- Is a best playground for constituent quark model
 - Simple two body system
 - Large mass
 - \rightarrow Non-relativistic, perturbative
- Also a good playground for exotics

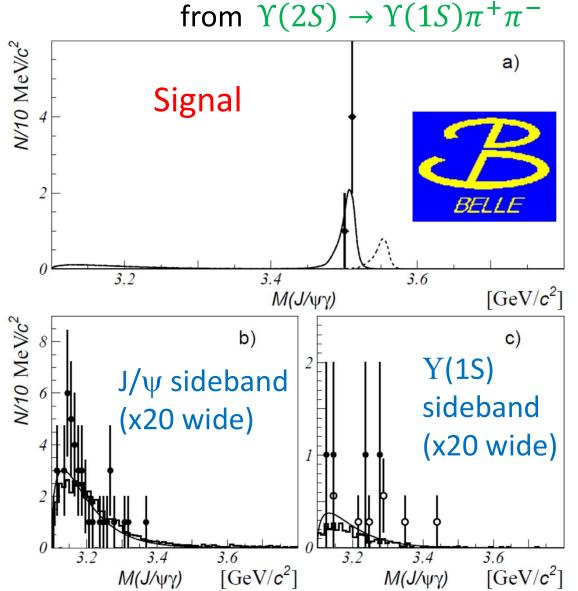
— QM predictions are robust
 → Exotics (Tetraquarks, hybrids, molecular states, glueballs, ...) are distinguishable



Production mechanisms in e⁺e⁻

- B decays charmonia
- Direct production/Initial State Radiation (ISR)
 - J^{PC}=1⁻⁻
- Two photon collision
 - J^{PC}=0⁺⁺, 2⁺⁺, ...
- Quarkonium transitions
 - Feed-down from higher states

Quarkonia summary


- Good agreement below open flavor threshold
- Exotic candidates, so called XYZ states, discovered

Belle activities

- We have not used the full potential of Belle data yet
 Belle is still actively producing papers
- Results within ~1 year include
 - Observation of radiative decay, $\Upsilon(1S) \rightarrow \chi_{c1} \gamma$ [PRL 124.122001]
 - Search for $\eta_{c2}(1D)$ [JHEP05.634]
 - Vector charmonium-like states in $e^+e^- \rightarrow D_s^+ D_{S1}(2536)^-$, $D_s^+ D_{S2}(2573)^-$ [PRD100.111103, PRD101.091101]
 - (Search for DDK bound state [arXiv:2008.13341])
- More results are still coming!

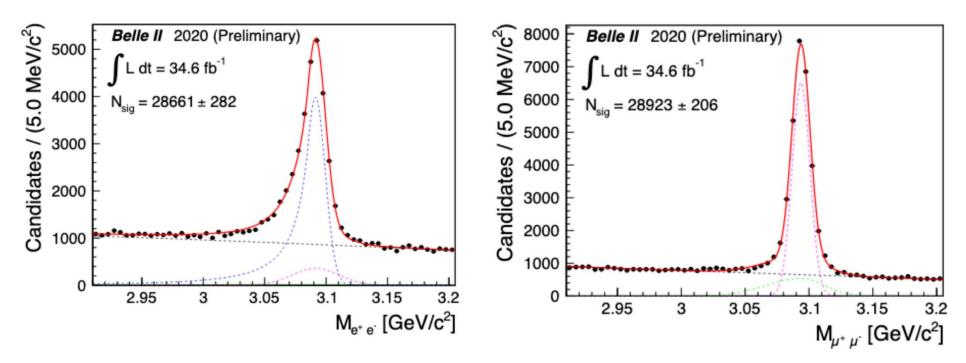
$\Upsilon(1S) \rightarrow \chi_{c1} \gamma$ in Belle

[PRL 124.122001]

• B =
$$(4.7^{+2.4+0.4}_{-1.8-0.5})$$

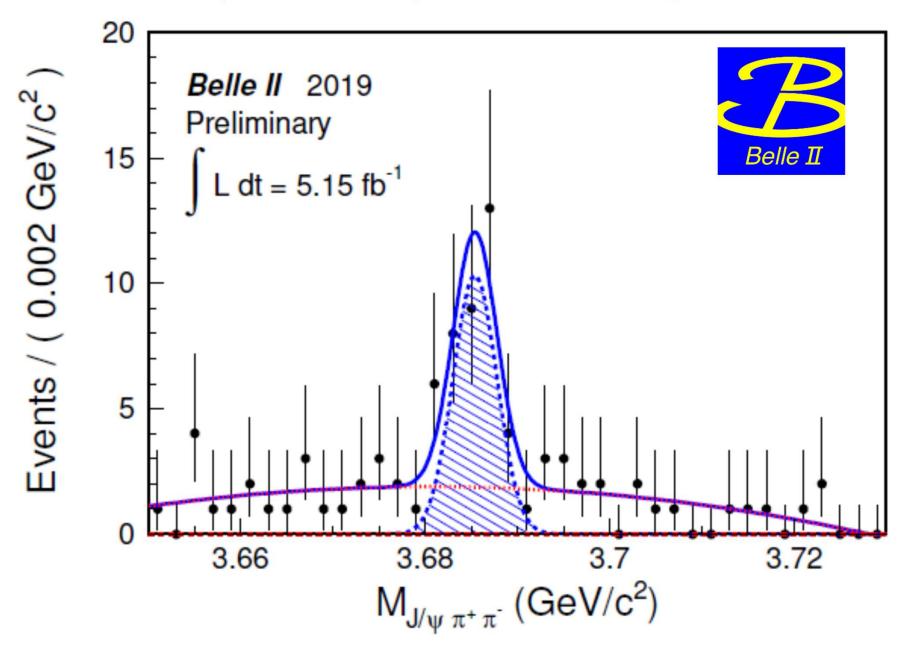
× 10⁻⁵

- Higher than theoretical prediction
 - Radiative decays to $\chi_{c0,2}$, $\eta_c(1,2S)$ are not observed


Remaining questions

- Many XYZ states were found, but
 - Which ones are exotic?
 - If exotic, what kind? Molecule? Tetraquark? Hybrid? Something else?
 - Goal: classification of these states
- J^P is not determined yet for some XZ states
 - Most important measurement in the coming days
- More states?
 - Several more should be discovered especially in b sector
 - Interesting to compare XYZ_c and XYZ_b
 - Discovery of unexpected?

Charmonia by B-decay


- Rich source for charmonium-like mesons
 - Not only discovery, but to identify nature of the states
- In decay modes $B \rightarrow KX$
 - J^{PC} -determination: B and K are spinless, so $J_Z(X)=0$
 - Determination of absolute branching fraction:
 X can be identified in recoil (missing) mass
- Good signals in Belle II with the present luminosity
 - Clear J/ ψ signals both in ee and $\mu\mu$ modes
 - $B \rightarrow \psi(2S)K, \psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

J/ψ in B decay

 PDF: CrystalBall+Gaussian for ee , double gaussian for μμ

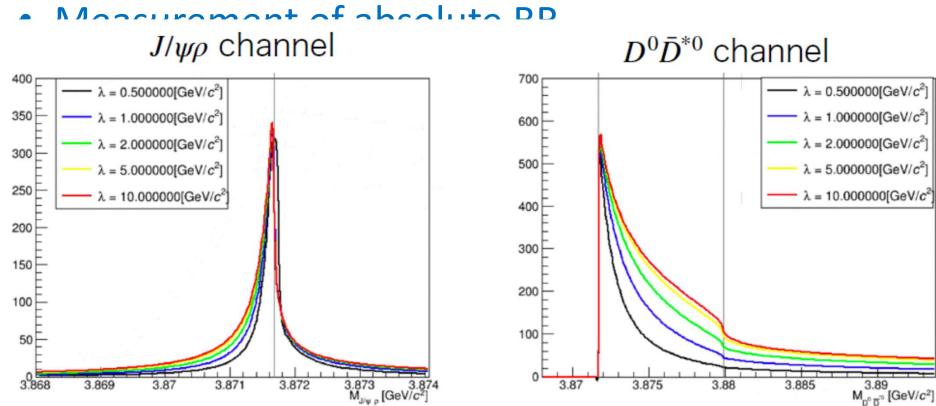
$B \rightarrow \psi(2S)K, \psi(2S) \rightarrow J/\psi \pi^+\pi^-$

X(3872)

• Rediscovery of X(3872) in B \rightarrow X(3872)K \rightarrow J/ $\psi \pi \pi K$ will be achieved within late 2020 or early 2021

– Belle discovery at 140 fb⁻¹

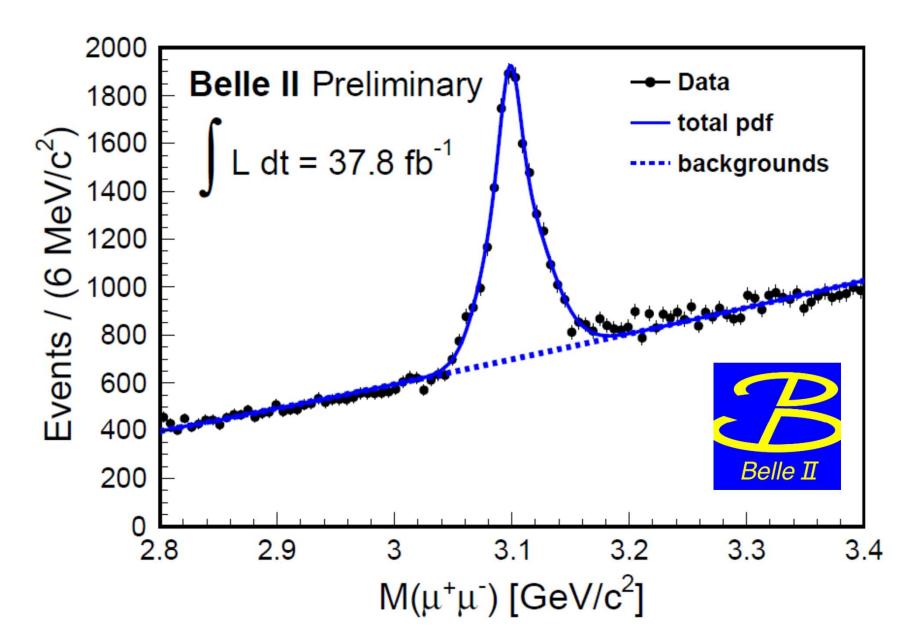
• Measurement of absolute BR


- with 1-5 ab⁻¹ using missing mass in B \rightarrow XK.

- Pole position search
 - Flatte fitting with X(3872) → J/ψππ alone cannot pin-down parameters [LHCb, arXiv:2005.13419]
 ← scaling behavior of Flatte distribution.

– Simultaneous fit with X(3872) $\rightarrow D^0 \overline{D}^{*0}$

X(3872)


- Rediscovery of X(3872) in B \rightarrow X(3872)K \rightarrow J/ $\psi \pi \pi K$ needs > 250 fb⁻¹,
 - Will be achieved within late 2020 or early 2021

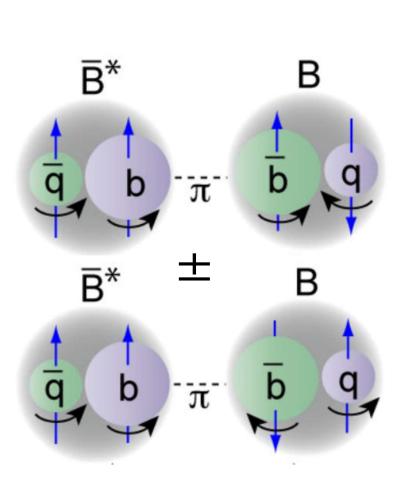
Charmonia by ISR

- Can use data from all higher energies.
 - Line shape study possible with single datasets
 Decomposition of many nearby states
- Channels of interest
 - $-\pi^{+}\pi^{-}J/\psi(\psi(2S), h_{c}, ...)$: Y(4260), Z(3900), ...
 - $-K^+K^-J/\psi(\psi(2S))$: Strange partners of Z?
 - $-\omega\chi_{c0}$: Y(4220)?
- Competition with BESIII energy scan
 - Similar effective luminosity
 - Wider mass range accessible

Belle II progress: J/ $\psi \rightarrow \mu\mu$ via ISR

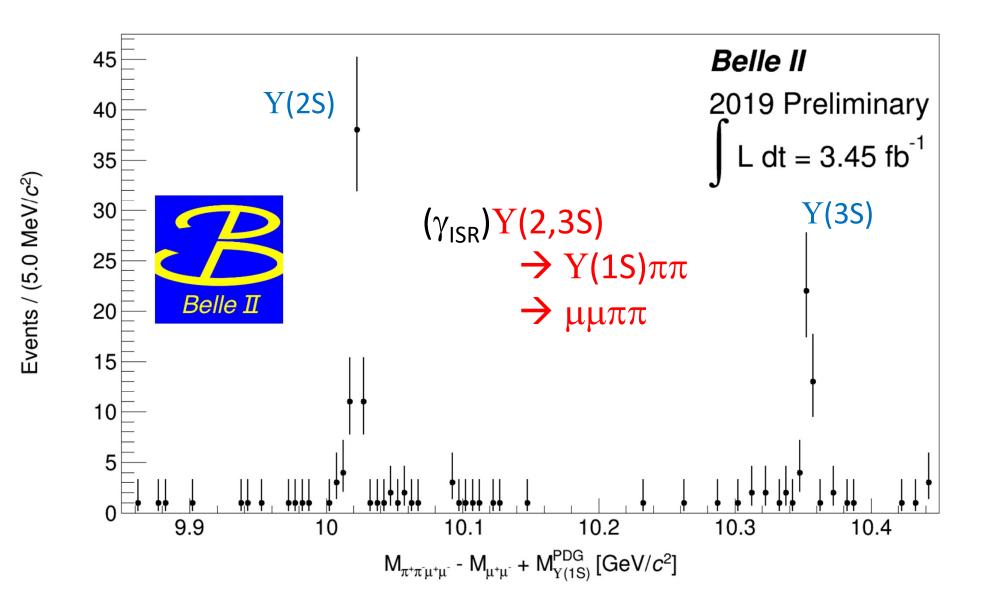
Bottomonia

- New things @Belle II
 - Measurement at Y(6S) becomes possible (~100 fb⁻¹)
 - \rightarrow Expect more Z_b states
 - Radiative transitions between bottomonia
- Most missing conventional bottomonia below the open bottom threshold should be found; e.g.,
 - $-\chi_b(3P)$ triplet
 - $Y(2D_3)$ triplet
 - $-\,\eta_{\text{b}}(\text{3S}),\,\eta_{\text{b}}(\text{1D}),\,Y(\text{1D}_{\text{1,3}})$
 - F-wave states
 - Several others


New states?

- Some XYZ_c states should have analogs in b sector
 - Y_b states will be searched for in energy scan.
 - Help to identify the nature of these states
- Expected new states?
 - Yes, there are some: especially for partner states of Z_b (see next slide)
- Possibility for unexpected?
 - Yes, it's always there. Who knows?

Wb


- Z_b(10610) & Z_b(10650) are molecular states?
 - Explains the fact they can decay both spin triplet states and singlet states
- If so, there should be Heavy-quark-spin-symmetry partner states nearby: W_b

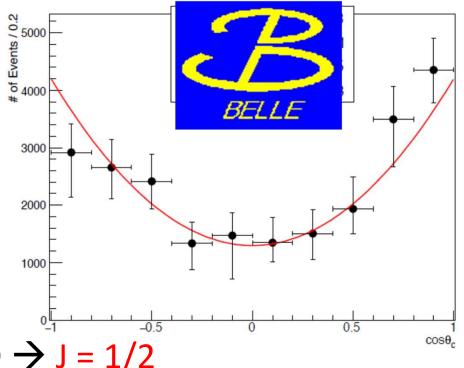
- Simplest one: $J^{P}=2^{+}$ state ($B^{*}B^{*}$)

• Can be searched in radiative transitions & $\pi\pi$ decay from Y(5S) and Y(6S)

Belle II progress: $Y(2,3S) \rightarrow Y(1S)\pi\pi$

$\Lambda_{\rm c}$ and other baryons

Baryons


- Much more complicated than quarkonia
 - 3 particles even in QM
- Ground states can be well understood by QM, but exotic candidates even in 1st excited states
 - Notorious examples: $\Lambda(1405)$, N(1440)
- Higher excited states are complete mess
 - Missing resonances
 - Multiple candidates in QM for known states
 - What are ordinary? What are exotic?
- J^P is not determined for most c,b-baryons
- We need more data and analysis effort

Belle activities

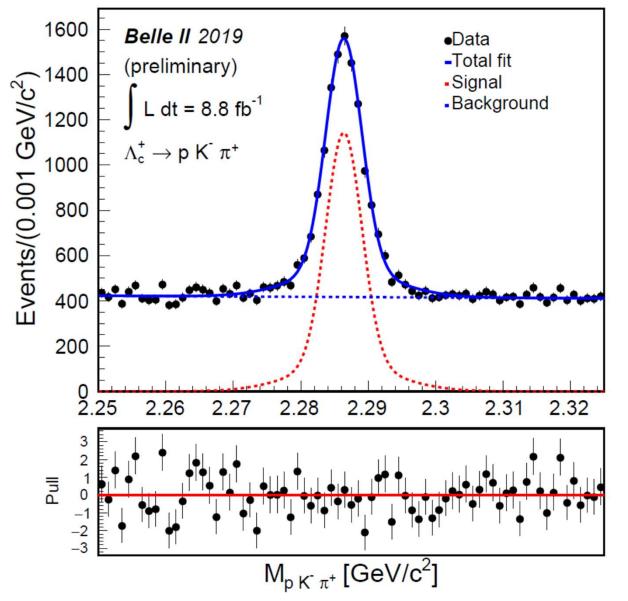
- Belle is also active with baryons
- Results within ~1 year include
 - Spin-parity determination of $\Xi_c(2970)$ [arXiv:2007.14700]
 - Radiative decays of $\Xi_c(2790)$ and $\Xi_c(2815)$ [arXiv:2009.03951]
 - $-\Lambda_{c} \rightarrow \Lambda \eta \pi^{+}$ decay BR and Λ (1670) [arXiv:2008.11575]
 - Observation of B $\rightarrow \overline{\Lambda_c} \Xi_c^*$'s [PRD100.112010]
- More results are still coming!

Spin-parity determination of $\Xi_c(2970)$

- In the decay $\Xi_c(2970)$ $\rightarrow \Xi_c^*(2645)\pi_1$ $\rightarrow \Xi_c\pi_1\pi_2$
- Angular correlation of the two pions

- Consistent with 1+3cos² $\theta \rightarrow J = 1/2$

• Parity: +


Decay branching fraction + heavy quark symmetry

- J^P=1/2⁺ is the same as Roper resonance, N(1440)
 - Same E_x (500 MeV). Hint for mysterious Roper resonance

Belle II possibilities

- J^P measurements for Λ_c*, Ξ_c*, Ω_c* ...
 → We can determine most presently known states
 → Comprehensive list of charmed baryons
- Search for Ξ^* and Ω^* resonances in the decay of $\Lambda_{\rm c},\,\Xi_{\rm c}$ and $\Omega_{\rm c}$
- Weak decay asymmetry parameters \rightarrow Spin structure, identify exotics, esp. $\Lambda(1405)$
- And more

Belle II progress: $\Lambda_c \rightarrow pK^-\pi^+$ rediscovery

- Mass:
 - consistent with PDG value

30

 Early Belle II data is promising for baryons, too.

Summary

- A lot of opportunities in Belle II
 - e^+e^- machines are good for hadron spectroscopy, too
 - Belle is also still active and producing many results
- Integrated luminosity is still small, but instantaneous luminosity already surpassed Belle
- Most rediscoveries of the XYZ states are expected after having harvested more than 250 fb⁻¹, i.e. within 2020 or early 2021.
- Not only quarkonia, but also baryons are interesting
 - Spin-parity measurements for charmed baryons
 - Relatively unexplored more opportunities.