

X(3872) in pp and Heavy lons Data

Daniele Fasanella (CERN) on behalf of the CMS Collaboration

Beauty2020: 19th International Conference on B-Physics at Frontier Machines, 21-24 Sep 2020

The X(3872)

- Discovered by Belle (PRL 91, 262001 2003) in 2003 in the decay: $B \to K X(3872) \to K (J/\psi \pi^+ \pi^-)$
- First "exotic" states: narrow peak with a mass strikingly on the $\bar{D}^0 D^{*0}$ threshold and incompatible with the standard charmonium expected value
- Quickly confirmed in protons collision at Tevatron and at LHC
- In 2013 LHCb measured the quantum numbers: $J^{PC} = 1^{++}$
- Nowadays open debated on X(3872) structure:
 - A compact (~1fm) diquark-anti-diquark 4q state
 - $\bar{D}^0 D^{*0}$ hadron molecule (loosely bound ~10 fm)
 - Quantum mixture of an hadron molecule and a charmonium state: $\bar{D}^0 D^{*0} + c\bar{c}[\chi_{c1}(2^3 P_{1++})]$

X(3872) at CMS

- CMS reconstructed ~**12.000** X(3872) in $J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^$ with 4.8 fb⁻¹ of 7 TeV pp data collected in 2011
- Studied:
 - Non-prompt component vs $p_T \ge 70^{\times 10^3}$
 - Cross section ratio w.r.t. ψ(2S)
 - Prompt X(3872) cross section
 - Invariant mass distribution of the fit system
- Results still relevant and compared to most recent_{3.7}
 publications from ATLAS and D0

Non prompt fraction (f_{NP})

- Non prompt X(3872) comes from decays of B hadrons in a secondary vertex related to the decay length (Ixy) of the B meson.
- Events with X(3872) from B decays are selected by requiring $I_{R} > 100 \mu m$
 - X(3872) prompt fraction with $I_{xy} > 100 \ \mu m$ is negligible (<0.1%)
 - First study of the p_T dependence of f_{NP}
- Measurement dominated by statistics: ~20% stat., 6-10% syst. for each p_T interval
- Same study performed by ATLAS and D0 with a full fit of the level distribution
- Compatible results:
 - For $\psi(2S)$ f_{NP} increases as a function of pr whereas those for (3872) are consistent with being independent of рт
 - f_{NP} for X(3872) seems more dependent on the collision energy than for $\psi(2S)$

0 7 8 9 10

20

30

Short-liv Short-liv 0.2S) fraction 1 0.1 0.2 0.1 0.7 0.1 0.7

uo V 0.2

0.1

0.4

Invariant mass distribution of the $\pi\pi$ system

- Studies at CDF and Belle suggested that X(3872) decays in J/ ψ and ρ^0
- CMS Event sample divided into $m(\pi + \pi -)$ intervals and X(3872) yields extracted from fits to $m(J/\psi \pi + \pi -)$
- The spectrum obtained from data is compared to simulations with and without an intermediate p

X(3872) Cross Section Measurements

- CMS measured the cross section ratio to the $\psi(2S)$ to cancel out many systematic sources
- The ratio showed **no significant dependence on the p** of the J/ ψ $\pi^+\pi^-$ system
- Using the measured f_{NP} we gave also the prompt X(3872) cross section x BR:

$$\sigma_{X(3872)}^{\text{prompt}} \cdot \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}) = \frac{1 - f_{X(3872)}^{B}}{1 - f_{\psi(2S)}^{B}} \cdot R \cdot (\sigma_{\psi(2S)}^{\text{prompt}} \cdot \mathcal{B}(\psi(2S) \rightarrow \mu^{+}\mu))$$

 This results are compared with a theoretical prediction, within an S-wave molecular model, by Artoisenet & Brateen [PhysRevD.81.114018] with calculations normalised using Tevatron results, modified by the authors to match the phase-space of the CMS measurement

• The shape is reasonably well described by the theory while the predicted cross-section is overestimated by over 3 σ

measurement is not supporting an S-wave molecular interpretation

Prompt X(3872) Cross Section

CMS measurement resulted consistent with **ATLAS**, considering that:

- ATLAS points positioned at the mean p_T of the weighted signal events
- **CMS** points positioned at the mean p_T of the theoretical predictions
- **ATLAS** compared this distribution to NLO NRQCD predictions assuming the X(3872) modelled as a mixture of $\chi_{c1}(2P)$ and a $\overline{D}^0 D^{*0}$ molecular state by Meng et al. [PRD96 (2017) 074014].
- $\chi_{c1}(2P)$ would play crucial role in the short-distance production
- $\overline{D}^0 D^{*0}$ would be mainly in charge of the hadronic decays of X(3872) into DD π , DD γ as well as J/ $\psi \rho$ and J $\psi \omega$.
- normalisation fixed through the fit to CMS data
- good agreement is found

X(3872) in PbPb collisions

- X(3872) production yield in QGP can help to shred light on its internal structure
 - Molecule are easier to be produced and destroyed than tetraquark
- X(3872) production could be enhanced through the quark coalescence mechanism, which could depend on the spatial configuration (size) of this exotic state
- Relevant parameter is the ratio of hadron yields calculated in the

coalescence model to those in the statistical hadronization model

Molecule (coalescence)

- collision
- binding energy?
 - - ... while standards in standard production decreases...

X(3872) in PbPb with CMS

• CMS analysed 1.7 nb⁻¹ of PbPb collision at $\sqrt{s} = 5.02$ TeV

- X(3872) and ψ (2S) with $15 < p_T^X < 50$ GeV and $|y^x| < 1.6$ fully reconstructed in same hadronic decay chain $J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$
- kept only events with centrality >90% •
- A boosted decision tree (BDT) algorithm used to suppress the • combinatorial background
 - signal samples are taken from simulation
 - background samples taken from data sidebands of the X(3872) mass rage
 - it uses 5 variables: •
 - χ^2 of the 4-tracks vertex
 - p_{T} balance of the pions $\frac{p_{T1} p_{T2}}{}$

 $p_{T1} + p_{T2}$

- p_{T2} balance of the slow pions
- opening angle between J/ψ and p_{T_1}
- opening angle between J/ψ and p_{T2}

First observation of X(3872) in PbPb Collisions

- This in an inclusive measurement:
 - modification of b-jet fragmentation)
 - we are interested in the **prompt part produced in QGP**:
 - measurement of the I_{xy} is used to disentangle the two components

First evidence of X(3872) production in heavy ion collisions! \Rightarrow Statistical significance > 3σ

A clear $\psi(2S)$ signal to the same final state is also visible

Raw yields (N_{raw}^{l}) are extracted with a UML fits: 2 Gaussian (from signal MC) + 4th-polynomial

the non-prompt part, coming from b-decays and produced outside of the QGP, it is related to the medium modification b-hadron production in HI collisions (such as beauty quark energy loss &

Corrected prompt X(3872) & $\psi(2S)$ yields

- As in the 7 TeV pp analysis a b-enriched sample is create imposing Ixy>0.1 mm
 - b-enriched yield obtained using the same fit
- Simulation are used to estimate the small prompt contamination in this sample

$$f_{prompt} = 1 - \frac{N_{B-enr}^{data} \cdot N_{Inclusive}^{NP MC}}{N_{B-enr}^{NP MC} \cdot N_{Inclusive}^{data}}$$

Cross check performed with Ixy template fit method

X(3872)/ψ(2S) Ratio in PbPb

- Ratio is defined as $R = \frac{N_{corr}^{X(3872)}}{N_{corr}^{\psi(2S)}}$, where N_{corr}^{i}
- Acceptance (α) and efficiency correction (ϵ_{tot}) are evaluated in PYTHIA MC embedded in HYDJET PbPb background

$$r_r = \frac{N_{raw}^i \cdot f_{prompt}^i}{(\alpha \cdot \epsilon_{tot})^i}$$

Indication of R enhancement in PbPb w.r.t. pp

- Better precision and accuracy needed to draw conclusions
- CMS also measured the strong suppression of $\psi(2S)$ in PbPb

X(3872) less suppressed than $\psi(2S)$ in PbPb

on the other side, LHCb measurement showed X(3872) more suppressed than $\psi(2S)$ in high multiplicity

$B_{S}^{0} \rightarrow X(3872)\phi$ Decay

- Additional measurements of b hadron decays involving X(3872) production can provide important inputs for understanding its internal structure and creation dynamics.
 - CMS looked for the decays $B_s \rightarrow X(3872)\phi$ and $B_s \rightarrow \psi(2S)\phi$ with 140 fb⁻¹ at $\sqrt{s}=13$ TeV

• Event Selection:

- HLT trigger of 2 muons compatible with J/ψ coming from a displaced vertex plus a track with $p_T > 1.2$ GeV
- . B_s^0 : 5.32 < $m(J/\psi K^+K^-\pi^+\pi^-)$ < 5.42 GeV, $p_T(B_S^0)$ > 10 GeV, $l_{xy}/\sigma_{l_{yy}}$ > 15
- Track assignment for the $B_S^0 \to J/\psi \pi^+ \pi^- K^+ K^-$ candidates:
 - 3.60 < $m(J/\psi\pi^+\pi^-)$ < 3.95 GeV
 - $1.00 < m(K^+K^-) < 1.04 \text{ GeV}$
 - 5.32 < $m(B_S^0)$ < 5.42 GeV
 - if more than one combination passes these selections, the candidate is discarded.
- $p_T(K) > 1.5$ and 2.2 GeV
- $p_T(\pi) > 0.7 \text{ GeV}$

13

$\psi(2S)$ signal

The signal yields are extracted using a 2D maximum likelihood fit to the m(J/ $\psi \pi \pi$) and m(K K) distributions of B⁰_S with a 4-components model made of:

ψ(2S) signal: double Gaussian

• signal: Breit–Wigner function convolved with detector mass resolution

background in m(KK): threshold function multiplied by a 1st polynomial

background in m(J/\psi\pi\pi): modified threshold function

Fitted yield: $15\ 359\ \pm\ 171\ \psi(2S)$

14

X(3872) Signal

- First observation of the decay $B_{s}^{0} \rightarrow X(3872)\phi!$
 - Significance > 6σ
- Same fit function of the $\psi(2S)$ additional constrain:
 - X(3872) signal shape fixed to ψ (2S) one with a parameter for the resolution scaling
- X(3872) yield: 299 ± 39

Production Ratios

 $R \equiv \frac{\mathcal{B}(B_s^0 \to X(3872)\phi) \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B_s^0 \to \psi(2S)\phi) \mathcal{B}(\psi(2S) \to J/\psi \pi^+ \pi^-)} = \frac{N(B_s^0 \to W(2S)\phi) \mathcal{B}(W(2S) \to J/\psi \pi^+ \pi^-)}{N(B_s^0 \to \psi(2S)\phi) \mathcal{B}(\psi(2S) \to J/\psi \pi^+ \pi^-)}$

 (2.21 ± 0) CMS 140 fb⁻¹ (13 TeV) I Data 80 Fit —— B⁰s signal 60 ------ Background 40 20 5.32 5.34 5.36 5.38 5.4 5.42

Estimated using the Splot^[GeV] technique to subtract the contributions from non resonant K K and $J/\psi \pi \pi$ combinations from the $m(B^0s)$ distribution

Background-subtracted mass distributions

$\frac{B_{s}^{0} \rightarrow X(3872)\phi}{(B_{s}^{0} \rightarrow \psi(2S)\phi)} \frac{\epsilon_{B_{s}^{0} \rightarrow \psi(2S)\phi}}{\epsilon_{B_{s}^{0} \rightarrow X(3872)\phi}}$	 Evaluate Takes in accepta 	ed in Simulatio to account de nce, trigger, a
Mass fit yields	candida efficienc	te reconstruct ies
$0.29 (\text{stat}) \pm 0.17 (\text{syst}))\%$	ó.	J. T. TOO ± 0.02
Source	Uncertainty (%)	
$m(K^+K^-)$ signal model	< 0.1	
$m(K^+K^-)$ background model	2.5	Estimated u
$m(J/\psi \pi^+\pi^-)$ signal model	5.3	several alter
$m(J/\psi \pi^+\pi^-)$ background model	4.3	fit functions
Non-B ⁰ background	1.2	
Simulated sample size	2.2	
Total	7.7	

16

 $\mathcal{B}(B^0_s \to X(3872)\phi) \mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-)$

Multiplying R by the known BR ($B_s \rightarrow \psi(2S)\phi$) and ($\psi(2S) \rightarrow J/\psi\pi\pi$): $\mathcal{B}(B_{s}^{0} \to X(3872)\phi) \mathcal{B}(X(3872) \to J/\psi \pi^{+}\pi^{-}) = (4.14 \pm 0.54 \,(\text{stat}) \pm 0.32 \,(\text{syst}) \pm 0.46 \,(\mathcal{B})) \times 10^{-6}$

Comparison of BRs indicates that the X(3872) formation in B meson decays is different from $\psi(2S)$

Additionally, the following pattern can be observed:

It has been shown in [Phys.Rev.D 102 (2020) 3, 034017] that this pattern can emerge from B decays in the compact tetraquark picture of the X(3872), where it belongs to a complex of four-quark bound states:

 $X_{u}=[cu][\bar{c}\bar{u}], X_{d}=[cd][\bar{c}d] \text{ and } X^{\pm}=[cu][\bar{c}d], [cd][\bar{c}\bar{u}]$

Summary

- After many years from its discovery the X(3872) remains "exotic"
 - it's exact nature is still not univocally determined
 - many models are proposed and profit from the increasing number of experimental results
- CMS has greatly contributed in this experimental effort •
 - First measurement of the non-prompt component dependence on p_T
- **NEW!** First evidence of the X(3872) in Heavy lons collisions
- First observation of the decay $B_S^0 \rightarrow X(3872)\phi$
 - New CMS results will come from the large collected datasets and the new LHC runs ahead of us.

