Conventional Spectroscopy @ LHCb

Arvind Venkat (arvenkat@syr.edu) On behalf of the LHCb collaboration Syracuse University

Beauty 2020, Japan (Virtual)

The LHCb experiment at CERN

- Single arm spectrometer designed for study of b & c quarks, working in $\eta \in [2, 5]$
- VELO provides very good IP resolution
 - $_{\circ}~~20~\mu m$ for high p_{T} tracks
 - Excellent primary and secondary vertex resolution
- RICH detectors allow highly efficient particle identification
 - $_{\circ}~$ Kaon ID ~ 95% for 5% $\pi \rightarrow K$ misID
- Tracking efficiency is 96%, $\delta p/p = 0.4\%$ @ 5 GeV

•Trigger efficiency:

- °~ 90% for dimuon channels
- o~ 30% for multi-body hadronic final states

•Total recorded luminosity:

Run 1: 1 fb⁻¹ at $\sqrt{s} = 7$ TeV, 2 fb⁻¹ at $\sqrt{s} = 8$ TeV Run 2: 6 fb⁻¹ at $\sqrt{s} = 13$ TeV

Outline

 $_{o}$ Isospin amplitudes in Λ_{b}^{0} and Ξ_{b}^{0} decays

 $_{o}$ First branching fraction measurement of $\Xi_{c}^{0} \rightarrow \Lambda_{c}^{+}\pi^{-}$

 $_{\rm o}$ First observation of excited Ω_b^- states in $\Xi_b^0~K^-$

• Other recent results

Isospin amplitudes in Λ_b^0 and Ξ_b^0 decays

PRL 124, 111802

Motivation

- $\Delta I = 1/2$ rule: $Re(A_0)/Re(A_2) \sim 22$ in $K \rightarrow \pi\pi$
 - Lattice ratio = $19.9 \pm 2.3 \pm 4.4$ RBC-UKQCD Abbott. et. al.
 - Analytical calculation = 16.0 ± 1.5 Buras et. al.
 - Long distance QCD dynamics largely responsible, but NP can't be excluded
- Consider $\Lambda_b \to J/\psi \Lambda$, $\Lambda_b \to J/\psi \Sigma^0$
 - Quark model assigns I = 0 to Λ_b , not expt. confirmed
 - $\Lambda_b \to J/\psi \Lambda \text{ is } \Delta I = 0, \Lambda_b \to J/\psi \Sigma^0 \text{ is } \Delta I = 1$

- If Λ_b consists of a isoscalar (ud) diquark, generic 1% isospin breaking will be suppressed
 - Test of diquark model
- $\Lambda \Sigma^0$ mixing is predicted to be ~1% in amplitude $\frac{\text{Kordov et. al}}{\text{Derv et. al}}$
- Isospin suppression commonly assumed in analyses
 - Pentaquark search in $\Lambda_b \rightarrow J/\psi \ p \ K^-$ assumed backgrounds from $\Lambda_b \rightarrow J/\psi \ \Sigma^*$ were suppressed compared to $\Lambda_b \rightarrow J/\psi \ \Lambda^*$. LHCb - Aaij et. al

Reconstruction

- All Run 1 and Run 2 data is used
- $\Lambda_b \rightarrow J/\psi \ (\Sigma^0 \rightarrow \Lambda \gamma)$ reconstructed without photon
 - $J/\psi \rightarrow \mu^+\mu^-, \Lambda \rightarrow p\pi^-$ form a detached vertex

$$R \equiv \frac{|A_1|^2}{|A_0|^2} = \frac{B(\Lambda_b \to J/\psi \Sigma^0)}{B(\Lambda_b \to J/\psi \Lambda)} \cdot \Phi_{\Lambda_b} = \frac{N(\Lambda_b \to J/\psi \Sigma^0)}{N(\Lambda_b \to J/\psi \Lambda)}$$

- Key backgrounds:
 - $\Lambda_b \to J/\psi \Lambda^*, \Lambda^* \to \pi^0 \Sigma^0$
 - $B \rightarrow J/\psi$ + charged tracks
 - $\Xi_b \rightarrow J/\psi \Xi$, $\Xi \rightarrow \Lambda \pi$
 - Ξ_b^- decay reconstructed fully to normalize
 - Combinatorial background

Fit & Upper Limit

Physics Implications

- Λ_b isospin amplitude ratio $|A_1/A_0| < 4.6\%$ @ 95% C. L.
- Non sighting of $\Lambda_b \to J/\psi \, \Sigma^0$ strengthens
 - Iso-scalar assignment of Λ_b in quark model
 - b(ud) diquark structure of Λ_b
 - Assumption of isospin suppression in past analyses
 - Exclusion of I=1 NP amplitudes

•
$$\Xi_b^0 \to J/\psi \Lambda (\Delta I = 1/2) \text{ vs. } \Xi_b^0 \to J/\psi \Xi^0 (\Delta I = 0)$$

- First measurement $\frac{B(\Xi_b^0 \to J/\psi \Lambda)}{B(\Xi_b^0 \to J/\psi \Xi^0)} = (8.2 \pm 2.1 \pm 0.9) \cdot 10^{-3}$ A₀
- Extract $|A_0/A_{1/2}| = 0.37 \pm 0.06 \pm 0.02$
- SU(3)_F prediction : $|A_0/A_{1/2}| = 0.41 \pm 0.08$ Derv et. al
- Similar to isospin amplitudes for heavy flavour mesons (obtained from fits to data):
 - $D \rightarrow \pi \pi$: $|A_0/A_2| \approx 2.5$ (O(1) enhancement) Franco et. al.
 - $B \rightarrow \pi \pi$: $|A_0/A_2| \approx 1.5$ (Close to "no QCD" limit) Grinstein et. al.

10 -	ビントリックシスリックシスリックシスリックシスリック
5 —	$\Lambda_{\rm b}$ is I=1, or New Physics —
2 —	
1 —	No preference for I=0 or I=1 amplitudes
0.5 —	
0.2 —	
0.1 —	 Expected from u-d mass diff if not diquark
0.05 —	Measured < 0.046@95% cl
0.02 —	- Expected from Λ-Σ mixing
0.01 —	· · · · · · · · · · · · · · · · · · ·
0.005 —	

First branching fraction measurement of $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$

arxiv:2007.12096 Accepted for publication in PRD

Motivation

- Ξ_c^0 usually decays via c quark to charmless final states
- Can also decay via s quark
 - $s \rightarrow u\overline{u}d$ (SUUD)
 - $cs \rightarrow dc$ (Weak Scattering WS)
- $B(\Xi_c^0 \to \pi^- \Lambda_c^+)$ depends on interference between these amplitudes
- Predictions with negative interference:
 - $B(\Xi_c^0 \to \pi^- \Lambda_c^+) > (0.025 \pm 0.015)\%$ <u>Voloshin</u>
 - $B(\Xi_c^0 \rightarrow \pi^- \Lambda_c^+) < 0.03\%$ Gronau & Rosner
 - $B(\Xi_c^0 \rightarrow \pi^- \Lambda_c^+) \sim 0.0087\%$ <u>Cheng et. al.</u>
- Predictions with positive interference:
 - $B(\Xi_c^0 \rightarrow \pi^- \Lambda_c^+) = (0.14 \pm 0.07)\% Gronau \& Rosner$
 - $B(\Xi_c^0 \rightarrow \pi^- \Lambda_c^+) < 0.3\%$ Faller & Mannel

SUUD amplitude for Ξ_c^0 decay

WS amplitude for Ξ_c^0 decay

Reconstruction

- 3.8 fb⁻¹ of 13 TeV data 2017, 2018
- Problem: Lack of accurately measured Ξ_c^0 modes for • normalization. Two methods used. Require
 - Prompt $\Lambda_c^+ \rightarrow p K^- \pi^+$
- Prompt Λ_c^+ combined with additional pion to form Ξ_c^0

<u>×10</u>

Data

— Total fit

····· Signal Λ_c^+ - - Background (b)

~2.7M Λ_c^+

Pre-scaled by 10%

LHCb

90 E

80

70 **–** 60 **–**

50 E

40 E

30

Framework

• $\frac{N(\Xi_c^0 \to \Lambda_c^+ \pi^-)}{N(\Lambda_c^+ \to pK^- \pi^+)} = \frac{I_{\Xi_c^0}}{f_{\Lambda_c^+}} \cdot B(\Xi_c^0 \to \Lambda_c^+ \pi^-)$ • $\frac{f_{\Xi_c^0}}{f_{\Lambda_c^+}} = C \cdot \frac{f_{\Xi_b^-}}{f_{\Lambda_c^0}}$ (assuming HQS, correcting for excited Ξ_b feed-down) • $\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (8.2 \pm 0.7 \pm 2.6)\% - LHCb - Aaij et. al.$ • $\frac{N(\Xi_c^0 \to \Lambda_c^+ \pi^-)}{N(\Xi_c^+ \to pK^- \pi^+)} = \frac{f_{\Xi_c^0}}{f_{\Xi^+}} \cdot \frac{B(\Lambda_c^+ \to pK^- \pi^+)}{B(\Xi_c^+ \to pK^- \pi^+)} \cdot B(\Xi_c^0 \to \Lambda_c^+ \pi^-)$ • $\frac{f_{\Xi_c^0}}{f_{\Xi_c^+}} = 1.00 \pm 0.01$ (assuming isospin symmetry) • $B(\Xi_c^+ \to pK^-\pi^+) = (0.45 \pm 0.21 \pm 0.07)\% - BELLE - Li et. al.$ • $\frac{N(\Xi_c^+ \to pK^-\pi^+)}{N(\Lambda_c^+ \to pK^-\pi^+)} = \frac{f_{\Xi_c^+}}{f_{\Lambda_c^+}} \cdot \frac{B(\Xi_c^+ \to pK^-\pi^+)}{B(\Lambda_c^+ \to pK^-\pi^+)}$ • World average $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.23 \pm 0.33)\%$

Results

- $B_{\Lambda_c}(\Xi_c^0 \to \pi^- \Lambda_c^+) = (0.98 \pm 0.04 \pm 0.35)\%$
- $B_{\Xi_c}(\Xi_c^0 \to \pi^- \Lambda_c^+) = (0.41 \pm 0.01 \pm 0.21)\%$
- Weighted average of B_{Λ_c} and B_{Ξ_c} yields first measurement
 - $B(\Xi_c^0 \to \pi^- \Lambda_c^+) = (0.55 \pm 0.02 \pm 0.18)\%$
- $B(\Xi_c^+ \to pK^-\pi^+) = (1.135 \pm 0.002 \pm 0.387)\%$
 - Compare w/ Belle measurement $(0.45 \pm 0.21 \pm 0.07)\%$
- We favor predictions made assuming constructive interference between $s \to u \overline{u} d$ and weak scattering amplitudes

First observation of excited Ω_b^- states PRL:124.082002

Motivation

• Numerous peaking structures observed

- Provide valuable information to improve our understanding of QCD
- Renewed interest in hadronic structure

Motivation

- 5 narrow states observed by LHCb in $\Xi_c^+K^$ in 2017 LHCb - Aaij et. al.
 - Interpreted as excited Ω_c^0 baryons
 - Mostly confirmed by Belle in 2018 BELLE-Yelton et. al.

Reconstruction

- <u>Yoshida et. al.</u> use constituent quark model to predict $\frac{1}{2}^{+,-}, \frac{3}{2}^{+,-}, \frac{5}{2}^{+,-}$ Ω_b states and their masses
- <u>Karliner & Rosner</u> interpret Ω_c states using quark-diquark model, propose 5 similar b(ss) states
- <u>Huang et. al.</u> analyze the $\Omega_c(3119)^0$ state as a molecular ED pentaquark, predict $J^P = \frac{1}{2}^- \Xi B$ resonance in $\Xi_b K$ channel with mass 6560 MeV and width 0.2 MeV
- We reconstruct $\Xi_b^0 \to (\Xi_c^+ \to p K^- \pi^+) \pi^-$ using all Run 1 and Run 2 data
 - Ξ_b^0 decay vertex required to be displaced from primary vertex

The ρ and λ excitations of a single heavy baryon Fig. from Yoshida et. al

17

Fits

- RS $(\Xi_b^0 K^-)$ and WS $(\Xi_b^0 K^+)$ spectra fit simultaneously
- Signal peaks described by S-wave rel. BW function with a Blatt-Weisskopf barrier factor, convoluted with the resolution function

• Ξ_b^0 combined with K⁻ originating from PV

- Cut on K⁻ PID to suppress random combinations
- Common vertex constrained to coincide with PV
- Improves resolution on $\delta M \equiv M(\Xi_b^0 K^-) M(\Xi_b^0)$ by 2x

 δM resolution obtained from simulation samples generated at several masses

- Described by sum of two Gaussians
- Smooth monotonic function used to parametrize resolution as function of mass

- All peaks have natural width consistent with zero
- Global significances calculated using pseudoexperiments, account for look-elsewhere effect

State	Signal Yield	Mass [MeV]	Width [MeV] (90% CL)	Global Significance
$\Omega_b(6316)^-$	15^{+6}_{-5}	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	< 2.8	2.1
$\Omega_b(6330)^-$	18^{+6}_{-5}	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	< 3.1	2.6
$\Omega_b(6340)^-$	47^{+11}_{-10}	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	< 1.5	6.7
$\Omega_b(6350)^-$	57^{+14}_{-13}	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	< 2.8 $1.4^{+1.0}_{-0.8} \pm 0.1$	6.2

Interpretation

- Simplest interpretation of peaks is as excited Ω_b^- states
 - L = 1 angular momentum excitations or n = 2 radial excitations
- Quark model calculations predict L = 1 states in this mass range Yoshida et. al.
 - 3P₀ model predicts 5 states: <u>Santopinto et. al.</u>
 - ~8 MeV mass splitting
 - 4 lightest have $\Gamma(\Xi_b^0 K^-) < 1$ MeV, heaviest has $\Gamma(\Xi_b^0 K^-) = 1.49$ MeV
 - Chiral quark-diquark model says $\frac{3}{2}^{-}$ and $\frac{5}{2}^{-}$ are narrow, $\frac{1}{2}^{-}$ is 50 100 MeV wide Wang et. al.
- Alternate interpretation: Peaks arise from $\Omega_b^{**-} \to \Xi_b^{\prime 0} (\to \Xi_b^0 \pi^0) K^-$, missing π^0
 - $\Xi_b^{\prime 0}$ yet to be observed.
 - Works if Ω_b^{**-} states are narrow, $m_{\Omega_b^{**-}} = m_{\Xi_b'^0} + \delta M_{peak}$ and
 - $m_{\Xi_{b}^{0}} + m_{\pi^{0}} < m_{\Xi_{b}^{\prime 0}} < m_{\Xi_{b}^{\prime -}}$
 - Doesn't work if $\Xi_b^{\prime 0}$ can only decay via $\Xi_b^0 \gamma$

Other recent results!!

Observation of new excited B_s^0 states PRELIMINARY

- Excess observed in B^+K^- spectrum, ~300 MeV above threshold
- Interpreted as two overlapping B^{**0}_s states
 - Likely L = 2 orbitally excited mesons
 - Significance of two peak structure w.r.t. single peak = 7σ

• Structure resulting from $B^{*+} \rightarrow (B^+\gamma) K^-$ disfavoured, but not impossible

- Masses and widths determined
 - $m_1 = 6063.5 \pm 1.2 \pm 0.8$ MeV, $\Gamma_1 = 26 \pm 4 \pm 4$ MeV
 - $m_2 = 6114 \pm 3 \pm 5$ MeV, $\Gamma_2 = 66 \pm 18 \pm 21$ MeV
- Total 18900 \pm 2200 cands. across both peaks and all p_T bins

$$R \equiv \frac{\sum \sigma(B_s^{**0}) \times B(B_s^{**0} \to B^{(*)+}K^{-})}{\sigma(B_{s2}^{*0}) \times B(B_{s2}^{*0} \to B^{+}K^{-})} = 0.87 \pm 0.15 \pm 0.19$$

Observation of new Ξ_b state

PRELIMINARY

Other recent results

• Observation of 3 new Ξ_c^0 states in $\Lambda_c^+K^ _{\mbox{PRL:124.222001}}$

Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma \; [\text{MeV}]$
$\Xi_{c}(2923)^{0}$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_{c}(2939)^{0}$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_{c}(2965)^{0}$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

- Precision measurement of B_c^+ meson mass
 - 6274.47 ± 0.27 ± 0.17 MeV JHEP07(2020)123
 - 2x improvement in precision compared to world avg.
- Search for doubly heavy $\Xi_{bc}^{0} \rightarrow D^{0} p K^{-}$
 - No significant excess observed
 - Upper limits set w.r.t. $\Lambda_b \to D^0 p K^-$

arxiv:2009.02481, Submitted to JHEP

Other recent results

• Observation of 3 new Ξ_c^0 states in $\Lambda_c^+ K^-$ PRL:124.222001

Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma \; [\text{MeV}]$
$\Xi_{c}(2923)^{0}$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_{c}(2939)^{0}$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_{c}(2965)^{0}$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

• Precision measurement of B_c^+ meson mass

- $6274.47 \pm 0.27 \pm 0.17 \text{ MeV}$ JHEP07(2020)123
- 2x improvement in precision compared to world avg.
- Search for doubly heavy $\Xi_{bc}^{0} \rightarrow D^{0} p K^{-}$
 - No significant excess observed
 - Upper limits set w.r.t. $\Lambda_b \to D^0 p K^-$

arxiv:2009.02481, submitted to JHEP

Conclusions

- New results in spectroscopy *continue* to come from LHCb
- Insight into baryon physics provided by studying isospin amplitudes in Λ_b and Ξ_b decays
 - Structure and isospin of Λ_b understood
- Suppressed $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$ decay observed for the first time
 - Constructive interference between SUUD and WS amplitudes favoured
- Excited Ω_b^- states observed in $\Xi_b^0 K^-$
- More to follow from Run 3 datasets after upgrade -> 23 fb⁻¹ by 2025/6
 - 5x instantaneous luminosity LHCb Upgrade:1709.04709

Lorenzo's talk on exotic spectroscopy@LHCb

THANK YOU!

BACKUP SLIDES

Isospin amplitudes in Λ_b^0 and Ξ_b^0 decays

$\Xi_c^0 \rightarrow \pi^- \Lambda_c^+$ Systematics

Source Estimate (%)				
	$\mathcal{B}(\Xi)$	$_{c}^{0} \rightarrow \pi^{-} \Lambda_{c}^{+})$	$\mathcal{B}(\Xi_c^+ \to pK)$	$(-\pi^+)$
	\mathcal{B}_1	\mathcal{B}_2	\mathcal{B}_3	
$f_{\Xi_b^-}/f_{A_b^0}$	32	-	32	External - LHCb
$f_{\Xi_c^0}/f_{\Lambda_c^+} = \mathcal{C} \cdot f_{\Xi_b^-}/f_{\Lambda_b^0}$	6	-	6	Uncertainty from feed-downs
$f_{\Xi_{c}^{0}}/f_{\Xi_{c}^{+}}=1$	-	1	1	
${\cal B}(\Xi_c^+ o p K^- \pi^+)$	_	49	-	External - BELLE
${\cal B}(\Lambda_c^+\! ightarrow pK^-\pi^+)$	_	5	5	
Simulation statistics	4	3	2	
Trigger efficiency	7	8	2	
Ghost tracks	2	2	0	
PID	1	1	1	
Tracking efficiencies	2	2	0	
Fit yields	6	6	3	
Intermediate decays	2	2	2	
b-decay sources	2	0	2	
Lifetimes	3	3	2	
Relative $\int \mathcal{L}$	_	1	1	
Sum of external	33	49	33	
Sum of intrinsic	12	13	6	
Sum of all	35	51	34	

Feed-downs of excited Ξ_b baryons are not symmetric b/w Ξ_b^- and Ξ_b^0 , primarily because $\Xi_b'(5935)^0$ always decays to $\pi^0(\text{or }\gamma)\Xi_b^0$, since the $\Xi_b^-\pi^+$ decay is kinematically forbidden to it.

Both $\Xi_b^{\prime-}$ and Ξ_b^{*-} states are seen to decay to both $\pi^-\Xi_b^0$ and $\pi^0\Xi_b^-$.

Any as yet unobserved higher mass would be isospin symmetric in their decays.

 $C = 1.18 \pm 0.04$ Uncertainty arises from errors on rel. BF measurements.

Correlation matrix for measured branching fractions

Excited Ω_b^- states - Systematics

Systematic uncertainties on measured peak positions in δM . The peaks are numbered in order of mass.

Source	Peak 1	Peak 2	Peak 3	Peak 4
	[MeV]	[MeV]	[MeV]	[MeV]
Momentum scale	0.01	0.02	0.02	0.03
Energy loss	0.04	0.04	0.04	0.04
Signal shape	0.02	0.02	0.02	0.02
Background	0.05	0.05	0.01	0.01
Total	0.07	0.07	0.05	0.05

The primary source of systematic uncertainty on the widths is from an imperfect knowledge of the resolution on δM . Based on previous studies of $D^{*+} \rightarrow D^0 \pi^+$, the resolution in simulation is found to agree with that in data within $\pm 10\%$

Deviations of ± 0.1 MeV relative to the true value are found from pseudo-experiments.

This is taken into account while calculating upper limits on the widths.

