Recent results on spectroscopy of XYZ states from **BESIII**

Sun Zhentian Institute of High Energy Physics, CAS **On Behalf of BESIII Collaboration** Sep. 23, 2020, Beauty2020

Beijing Electron and Positron Collider(BEPCII)

Beam energy: 1~2.3GeV Ecms= 2~4.6 GeV

Upgrade in 2019

Beam energy: 1~2.45GeV Ecms= 2~4.9 GeV

Chin. Phys. C 44, 040001 (2020)

Beijing Spectrometer (BESIII)

- Inner to Outside:
- ✓ Main Drift chamber(MDC), momentum resolution: 0.5%@1GeV@1T
- ✓ Time of flight System(TOF), time resolution: 68ps@barrier, 110ps@endcap
- ✓ Electromagnetic Calorimeter(EMC), energy resolution:2.5%,

position resolution:6mm@1GeV

- ✓ Solenoid super-conducting magnet(SSM), 1 Tesla
- ✓ Muon chamber(MUC), spatial resolution: 2cm
- Acceptance: 93% of 4π

3

BESIII data sets for XYZ study

XYZ data

□~20 fb⁻¹ e⁺e⁻ collision data event in open charm region from 3.8-4.7GeV.

□Massive events on several special energy points: Such as 4.26GeV, and 4.36GeV

R-scan data in open charm region □Energy points with luminosity < 20 pb⁻¹

□Initially taken for R study, can also help the XYZ study

Y state: Charmoniumlike Vector states

Cross section of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

PRD 102, 012009 (2020) 50 σ(e⁺e⁻→π⁰π⁰J/ψ) (pb) 🔶 data **BES**II -Fit 40 ----Y(4220) --- Y(4320) 30 ----- NonRes 20 10 α(π⁰π⁰J/ν) α(π⁺π⁻J/ν) 0 50 3.8 4.2 4.4 4.6 √s (GeV)

D The measured cross section compared with $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ satisfy the isospin symmetry.

□ In the fitting, the parameter of Y(4320) are fixed to charged mode. Significance(Y(4320))=4.3 σ □ And the measured parameter of Y(4220) also agree with that in e⁺e⁻ $\rightarrow \pi^+\pi^-J/\psi$.

((4220):M = (4220.4
$$\pm$$
2.4 \pm 2.3) MeV, Γ = (46.2 \pm 4.7 \pm 2.1) MeV

$$\sigma_{\rm fit}(\sqrt{s}) = |\sqrt{\sigma_{NY}(\sqrt{s})} + f_1(s)e^{i\phi_1} + f_2(s)e^{i\phi_2}|^2,$$

$$\sigma_{NY}(\sqrt{s}) = \Phi(\sqrt{s})e^{-p_0(\sqrt{s}-M_{\rm fitd})+p_1}$$

$$f_i(s) = \frac{M_i}{\sqrt{s}} \frac{\sqrt{12\pi\Gamma_{ee}^i\Gamma_{\rm tot}^i\mathcal{B}_{\pi^0\pi^0J/\psi}^i}}{s-M_i^2 + iM_i\Gamma_{\rm tot}^i} \times \sqrt{\frac{\Phi(\sqrt{s})}{\Phi(M_i)}},$$

6

 $\sigma(e^+e^- \rightarrow \eta J/\psi)$

Comparison of Y(4220) parameters in different channels

The mass of Y(4220) in $e^+e^- \rightarrow \eta J/\psi$ is compatible with other channels.

Cross section of $e^+e^- \rightarrow D^+D_1(2420)^- + c.c.,$ with $D_1(2420)^+ \rightarrow \pi^+\pi^-D^+$

PRD 100, 032005 (2019) Full reconstruction method

PLB 804 (2020) 135395 Partial reconstruction method. Only reconstruct π⁺π⁻D⁺

 $\sigma(e^+e^- \rightarrow D^+D_1(2420)^-)$ is measured. This can provide information to the Molecular model explanation of Y states

 $σ(e^+e^- → π^+π^-ψ(3770)) is also measured.$ D1(2420): M = (2427.2±1.0±1.2) MeV, Γ = (23.2±2.3±2.3) MeV

Z_c state: Isospin non-zero Charmoniumlike states with heavy quark pair $c\bar{c}$ inside

PWA of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

 $\sigma(e^+e^- \rightarrow \pi^0 Z_c^0 \rightarrow \pi^0 \pi^0 J/\psi)$

PRD 102, 012009 (2020)

- The Zc fraction is extracted with PWA
- A hint of connection between Y(4220) and Zc(3900)

Parameters	Solution I	Solution II	
$p_0(c^2/\text{MeV})$	0.0 ± 11.3		
p_1	$(1.8 \pm 1.9) \times 10^{-2}$		
$M(R)$ (MeV/ c^2)	4231.9 ± 5.3		
$\Gamma_{\rm tot}(R)$ (MeV)	41.2 ± 16.0		
$\Gamma_{\rm ee}\mathcal{B}_{R\to\pi^0 Z_c(3900)^0}(\rm eV)$	0.53 ± 0.15	0.22 ± 0.25	
$\phi(R)$	$(-103.9 \pm 33.9)^{\circ}$	$(112.7 \pm 43.0)^{\circ}$	

Evidence of $e^+e^- \rightarrow \pi Z_c^{(\prime)}, Z_c^{(\prime)} \rightarrow \rho^{\pm}\eta_c$

Nine $η_c$ channels are used to reconstruct $η_c$. **After the** $η_c$ and ρ mass window, a hint of Z_c (3900) peak can be seen on the recoiled mass of the bachelor π.

The blue histogram is η_c sideband. Z_c parameter are fixed to latest measurement.

□Strong evidence of Zc(3900) →ρη_c is observed at Vs=4.23GeV, with statistical significance 4.3σ(3.9σ including systematic uncertainty)
 □No significant Zc'(4020)→ρη_c observed. (statistical significance 1.0σ)

 $R_{zc} = Br(Z_c \rightarrow \rho \eta_c)/Br(Z_c \rightarrow \pi J/\psi)$

TABLE III. Comparison of the measured $R_{Z_c(3900)}$ and $R_{Z_c(4020)}$ with the theoretical predictions.

Ratio	Measurement	Tetraquark	Molecule
$R_{Z_c(3900)}$	2.3 ± 0.8 [29]	230^{+330}_{-140} [12]	$0.046^{+0.025}_{-0.017}$ [12]
		$0.27^{+0.40}_{-0.17}$ [12]	1.78 ± 0.41 [17]
		0.66 [13]	6.84×10^{-3} [18]
		0.56 ± 0.24 [14]	0.12 [19]
		0.95 ± 0.40 [15]	
		1.08 ± 0.88 [16]	
		1.28 ± 0.37 [17]	
		1.86 ± 0.41 [17]	
$R_{Z_{c}(4020)}$	<1.2 [4]	$6.6^{+56.8}_{-5.8}$ [12]	$0.010^{+0.006}_{-0.004}$ [12]

Molecular Zc

BESIII result Theoretical prediction

Tetraquak Type-1

X state: other states not well understood

X(3872) exclusive decay modes evidence of X(3872) $\rightarrow \gamma J/\psi$

PRL124, 242001 (2020)

TABLE I. Relative branching ratios and UL on branching ratios compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$ [18,27], where systematic uncertainties have been taken into account.

Mode	Ratio	UL
$\gamma J/\psi$	0.79 ± 0.28	
$\gamma \psi'$	-0.03 ± 0.22	< 0.42
$\gamma D^0 \overline{D^0}$	0.54 ± 0.48	< 1.58
$\pi^0 D^0 \overline{D^0}$	-0.13 ± 0.47	< 1.16
$D^{*0}\bar{D^0} + { m c.c.}$	11.77 ± 3.09	
$\gamma D^+ D^-$	$0.00^{+0.48}_{-0.00}$	< 0.99
$\omega J/\psi$	$1.6^{+0.4}_{-0.3} \pm 0.2$ [18]	
$\pi^0 \chi_{c1}$	$0.88^{+0.33}_{-0.27} \pm 0.10$ [27]	

X(3872) described with Flatte in ref. PLB 680, 453 (2009)

$$D(E) = E - E_f + \frac{i}{2} (g_1 k_1 + g_2 k_2 + \Gamma(E) + \Gamma_c),$$

Evidence of X(3872) $\rightarrow \gamma J/\psi$

- Evidence of X(3872) $\rightarrow \gamma J/\psi$ with significance 3.5 σ
- Uplimit of $R_{\psi} = \frac{B[X(3872) \rightarrow \gamma \psi']}{B[X(3872) \rightarrow \gamma J \psi]} < 0.59 (CL. 90\%)$
- Previous measurement of R_ψ BaBar: 3.4±1.4 LHCb: 2.46±0.64±0.29 Belle: <2.1 (CL. 90%)
- BESIII's result have tension with BarBar and LHCb's result.
- This ration R_{ψ} can provide information for distinguishing different theoretical models of X(3872)

 $e^+e^-\rightarrow\gamma X(3872)\rightarrow\gamma\omega J/\psi, \gamma \pi^+\pi^-J/\psi$

Cross section measurement of e⁺e⁻ \rightarrow γX(3872) for (mid) ωJ/ψ and (right) π⁺π⁻J/ψ channel

□ Simultaneous fit to the cross section with a single Breit-Wigner resonance

$$M[Y(4200)] = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^{2}$$

$$\Gamma[Y(4200)] = 115^{+38}_{-26} \pm 12 \text{ MeV}$$

$$\mathcal{R} = \frac{\mathcal{B}[X(3872) \to \omega J/\psi]}{\mathcal{B}[X(3872) \to \pi^{+}\pi^{-}J/\psi]} = 1.6^{+0.4}_{-0.3} \pm 0.2$$

A possible of connection between Y and X(3872)

Summary

- Y(4220) with mass around 4.22 GeV are observed in many decay modes. σ ($e^+e^- \rightarrow \pi^0\pi^0 J/\psi$) and $\sigma(e^+e^- \rightarrow \eta J/\psi)$ are new released.
- $\sigma(e^+e^- \rightarrow D^+D_1(2420))$ and $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(3770))$ are measured
- PWA of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ are performed, confirm the J^p of $Z_c(3900)^0$ to be 1⁺, connection between Y(4220) and Zc(3900) is observed.
- Evidence of $Z_c(3900) \rightarrow \rho^{\pm} \eta_c$ is observed.
- Evidence of X(3872) $\rightarrow \gamma J/\psi$ is observed and the ratio
 - $R_{\psi} = \frac{B[X(3872) \rightarrow \gamma \psi']}{B[X(3872) \rightarrow \gamma J \psi]} < 0.59 \text{ have tension with LHCb and BaBar's result.}$
- Cross section of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$ and $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$

are measured and possible connection between Y structure and X(3872) is observed.

• More results are coming.