

## Search for low-mass new physics states at BaBar

19th International Conference on B-Physics at Frontier Machines



21-24 September 2020 - IPMU, Tokyo - Virtual conference

Laura Zani\*

On behalf of the BaBar collaboration

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPN

erc

\*zani@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

#### Outline

- Dark Matter puzzle
- Experimental context: B-factories and BaBar
- Dark sector searches at electron-positron colliders
  - Axion-Like Particles in meson decays
  - Dark tauonic force *arxiv:2005.01885*
- Results

#### Dark matter puzzle

**Dark Matter (DM)** is one of the most compelling reason for New Physics (NP) searches



#### ...how to search for it?

1) Detect the energy of *nuclear(electron) recoil* 



3) DM weakly couples to SM particles and it can be produced in *SMparticles annihilation* at *accelerators* 

# Direct Method

2) Detect the *flux of visible particles* produced by *DM annihilation* and decay



 $\rightarrow$  This presentation will focus on DM searches at B-factories

### BaBar experiment



\*Luminosity paper: https://arxiv.org/pdf/1301.2703.pdf

#### Dark Sector at B-Factories

- Possible sub-GeV scale scenario: light dark sector weakly coupled to SM through a light *mediator X*
  - ^ Scalar portal  $\rightarrow$  Dark Higgs/Scalars
  - <sup>–</sup> Vector portal  $\rightarrow$  Dark Photon A'
  - Neutrino portal  $\rightarrow$  Sterile Neutrinos
  - Pseudo-scalar portal → Axion Like Particles (ALPs)



#### Dark Sector at B-Factories

- Possible sub-GeV scale scenario: light dark sector weakly coupled to SM through a light *mediator X* 
  - Scalar portal  $\rightarrow$  Dark Higgs/Scalars
  - Vector portal  $\rightarrow$  Dark Photon A'
  - Neutrino portal  $\rightarrow$  Sterile Neutrinos
  - Pseudo-scalar portal  $\rightarrow$  Axion Like Particles (ALPs)



Submitted to PRL, arxiv:2005.01885

L.Zani, BEAUTY2020 - Search for low-mass NP states at BaBar

126 GeV/r н

Higgs

u

C

e

electron

1/2 electron

spin → 1/2

DUARK

EPTONS

C

S

strange

μ

muon

muon

=4 18 GeVic

b

photon

7 boson

W boson

bottom

tau

Standard Model

charm

#### ALPs in meson decays

- ALPs are pseudo-scalars mainly coupling to pairs of gauge bosons, with non-renormalizable coupling constant  $[g_{aV}]\sim 1/M$
- Most of ALPs searches target *gluons or photons coupling* at E  $\sim$  MeV-GeV
- $W^{\scriptscriptstyle\pm}$  coupling is usually suppressed at low energy for E <<  $M_{_W}$ 
  - $\rightarrow$  Flavor Changing Neutral Current processes are a perfect testbed to search for low mass ALP emitted by a W<sup>±</sup> ( exploit b  $\rightarrow$  s transitions)
- $B\!\to\,K\gamma\gamma$  is extremely rare in the SM and hence uniquely sensitive to very small ALP-W coupling  $g_{_{aW}}$
- +  $\tau \sim 1/m_{_a}{}^3g^2_{_{a\gamma\gamma}}$  : displaced vertex, long-lived particle constraints



Search for the process  $B^{\pm} \rightarrow K^{\pm}a$ ,  $a \rightarrow \gamma \gamma$  by looking at narrow peaks in the **diphoton** invariant mass spectrum  $\rightarrow$  signature searched for the **first time**!

## $B^{\pm} \rightarrow K^{\pm}a$ : event selection

- Reconstruct an event with a good K<sup>±</sup> candidate and 2 photons, constrained by a kinematic fit to come from the beam spot
- Constrain the reconstructed **B-meson kinematic variables** (mass, energy) to the beam energy:

$$\begin{split} m_{\rm ES} &= \sqrt{\frac{\left(s/2 + \vec{p_i} \cdot \vec{p_B}\right)^2}{E_i^2} - p_B^2} > 5.0 \ {\rm GeV} \\ |\Delta E| &= |\sqrt{s}/2 - E_B^{\rm CM}| < 0.3 \ {\rm GeV} \\ ({\rm E_i, \, p_i}) &= {\rm four \ momentum \ of \ CM \ system \ in \ lab \ frame} \end{split}$$

- 2 Boosted Decision Trees trained separately on the two main background contributions: continuum from  $e^+e^- \rightarrow q\bar{q}$  processes and generic BB decays
  - $\rightarrow$  Final BDT output selections Punzi FOM optimized

L.Zani, BEAUTY2020 - Search for low-mass NP states at BaBar

**Total data set**: 424/fb at  $\Upsilon(4S)$ , corresponding to 240 million B<sup>+</sup>B<sup>-</sup> pairs **Blind analysis:** optimize selections on 8% of data then discard it.



## $B^{\pm} \rightarrow K^{\pm}a$ : fit strategy and signal extraction

- Scan diphoton spectrum: **476 unbinned maximum likelihood fits** for each mass hypothesis (excluding scan in the vicinity of peaking background contamination from  $\pi^0$ ,  $\eta$ ,  $\eta'$ )
- Fit windows vary from 30-70σ, with σ the signal resolution (8-14 MeV) → extracted from fits to signal simulations by using double-side Crystal Ball function and interpolated for intermediate values



- **Signal PDF**: double-side Crystal Ball function; shape parameters fixed to results from fits to simulations
- Background PDF:
  - Combinatoric from continuum  $\rightarrow$  2nd-order polynomial for  $m_a < 1.35$  GeV, 1st-order polynomial for higher masses;
  - $Peaking \rightarrow SM$  diphoton resonance templates (from simulation) + resolution Gaussian function.

Highest global significance  $< 1\sigma$  after including trial factors

### $B^{\pm} \rightarrow K^{\pm}a$ : branching fraction limits

- No significant signal observed, set **Bayesian 90% CL upper limits** on the BF( $B^{\pm} \rightarrow K^{\pm}a$ ,  $a \rightarrow \gamma\gamma$ ):
  - Flat positive priors and integrate over nuisance parameters (*marginalization*)→ systematic uncertainty modeled with a Gaussian distribution with width equal to the size of the estimated effect
- Systematic effect due to background modeling expected to be improved in final revision
- Same selection and fit procedures as optimized for prompt ALPs applied to long-lived ALPs, for  $m_a < 2.5$  GeV



L.Zani, BEAUTY2020 - Search for low-mass NP states at BaBar

## $B^{\pm} \rightarrow K^{\pm}a$ : limits on ALP coupling

- From measured upper limits on BF as a function of the lifetime derive limits on g<sub>aW</sub> coupling
- Improvement of 2 orders of magnitude on all the mass spectrum for  $m_a < 5$  GeV

\*\* Limits from kaons decays are extracted from existing measurements, according to the study presented here: Phys.Rev.Lett. 118 (2017) 11, 111802



#### Dark tauonic force

- New light dark scalar with mass-proportional coupling to leptons
- Could explain the g-2 muon anomaly (only weakly constrained by previous searches for muonic dark force\*)
  - $\rightarrow$  Leptophilic scalar radiatively emitted by  $\tau$  pairs may be enhanced due to larger masses!
- Look for the process:  $e^+e^- \rightarrow \tau^+\tau^-\phi_{\perp}$ ,  $\phi_{\perp} \rightarrow \ell^+\ell^-$  ( $\ell = e, \mu$ )
- Search for a narrow resonance in **dilepton spectrum** for 0.04 GeV  $< m_{\phi L} <$  7.0 GeV:
  - $m_{\phi L} < 2 m_{\mu}~$  search separately for lifetimes  $c \tau_{\phi L} =$  0, 1, 10, 100 mm;
  - <sup>-</sup> above dimuon threshold, only prompt decays.





Total BaBar data set at  $\Upsilon(2S)$ ,  $\Upsilon(3S)$ ,  $\Upsilon(4S)$  and their vicinities: **514** fb<sup>-1</sup>

\* 5% used for analysis optimization and discarded  $\rightarrow$  **BLIND ANALYSIS** 

\* Phys. Rev. D 94,011102 (2016)

#### Dark leptophilic scalar: event selection

- Only 4 tracks + missing energy/momentum due to  $\tau$  neutrinos
- Apply Lepton Identification and reconstruct  $\phi_{L}$  candidates as two oppositely charged leptons, kinematically fitted to the **same vertex**:
  - Constrain to beam spot region for dimuon resonance (prompt only)
  - Resulting momentum points back to Interaction Point for e+e-
    - $\rightarrow$  allow for displaced vertex signatures
- Reject radiative dilepton + pair conversions contamination:
  - $^-$  Visible mass lower than 9 GeV
  - Angular isolation from nearby tracks for reconstructed  $\phi_{\,\scriptscriptstyle L}$  candidate
  - $^-$  Missing momentum of the event  $> 300~{\rm MeV}$
- Boosted Decision Tree optimized for best signal sensitivity as function of the  $\phi_{\,\scriptscriptstyle L}$  mass
- Remaining **peaking background** from  $J/\psi$  and  $\Upsilon(2S)$  contamination  $\rightarrow$  corresponding mass not scanned in the signal search
- $\pi^{0} \rightarrow \gamma \gamma$ , with  $\gamma \rightarrow e^{+}e^{-}$  conversions observed for  $c\tau_{\phi L} = 1 \text{mm} \rightarrow \text{broader feature than signal resonances, included in the scan and model as background component$

L.Zani, BEAUTY2020 - Search for low-mass NP states at BaBar



#### Dark leptophilic scalar: signal yield extraction

- Scan the dilepton mass spectra with unbinned maximum likelihood fits for each mass hypothesis as a function of the lifetimes, in step of signal resolution, σ
- For dimuon final states, fit *dimuon reduced mass* for more precise background description:

$$ightarrow$$
 m  $_{
m R}$   $=$  (m  $^2$   $_{\mu\mu}$   $-$  4m  $^2$   $_{\mu}$ )  $^{1/2}$ 

• Background PDF:

• Fit windows on **dielectron** (*dimuon*) spectrum of **20-50** $\sigma$  (*fixed to 60* $\sigma$ )

**Fit Properties** 

#### • Signal PDF:

non-parametric kernel density function, modeled from signal samples and interpolated among simulated mass points

- Combinatoric from continuum  $\rightarrow$  dielectron: 2nd-order polynomial + exponential (except for  $c\tau_{\varphi L}$ = 100 mm, polynomial only); dimuon: 3rd-order polynomial and 2nd-order polynomial for higher masses.
- Peaking from  $\pi^{0}$  conversions (for  $c\tau_{\phi L} = 1 mm$ )  $\rightarrow$  resolution Gaussian function modeled from **sideband** data
- <sup>-</sup> Peaking from  $J/\psi$  and  $\Upsilon(2S) \rightarrow$  shape fixed to results from fits to simulated samples, floating yields (fitted directly on *data*)

#### $\rightarrow$ Highest significance, including trial factor, is 1.4 $\sigma$ at $\sim$ 2.14 GeV mass

L.Zani, BEAUTY2020 - Search for low-mass NP states at BaBar

#### Resolutions, $\sigma$ :

1 MeV ( $m_{\phi L} =$  40 MeV,  $c\tau_{\phi L} =$  100 mm) – 50 MeV ( $m_{\phi L} =$  5 GeV, prompt decays)

 $\rightarrow$  extracted from fits to signal simulations by using double-side Crystal Ball function

#### Dark leptophilic scalar: results

From the fitted signal yields compute the cross section for e<sup>+</sup>e<sup>-</sup>→τ<sup>+</sup>τ<sup>-</sup>φ<sub>⊥</sub>, φ<sub>⊥</sub>→ℓ<sup>+</sup>ℓ<sup>-</sup> (ℓ=e,μ) for different {lifetime, final state} as a function of the beam energy

$$\sigma_{4S} = \frac{N_{sig}}{\sum_{i=2S,3S,4S} (\frac{\sigma_{th,i}}{\sigma_{th,4S}} \epsilon_i \mathcal{L}_i) BF(\phi_L \to \ell^+ \ell^-)}$$

- Extract 90% CL Bayesian upper limits
  - $\rightarrow$  flat positive priors and Gaussian-distributed systematic uncertainty included by marginalizing
  - <sup>–</sup> dominant systematic effect coming from data/MC comparison  $\rightarrow$  assign 3.8% (4%) systematic uncertainty in the dielectron (dimuon) signal efficiency



Limits on the *leptophilic scalar coupling* as a function of the searched mass are derived within MadGraph5 (iterative procedure)



## Summary

- The full BaBar data set dominates constraints on some low mass New Physics states.
- Shown today:
  - <sup>-</sup> First ALPs search in flavor changing B-meson decays ( $B^{\pm} \rightarrow K^{\pm}a$ ,  $a \rightarrow \gamma\gamma$ )
    - improve the existing limits on the ALP and W-boson coupling  $g_{aW}$  of 2 orders of magnitude below 5 GeV
  - <sup>–</sup> First search for a new dark leptophilic scalar produced in  $\tau$ -pair events
    - limits on the leptophilic scalar coupling  $\boldsymbol{\xi}$  improved by one order of magnitude  $\rightarrow$  favored g-2 muon anomaly band ruled out completely up to 4 GeV.

Thanks for your attention!

\*\* Limits derived in Phys.Rev.Lett. 118 (2017) 11, 111802





#### Introduction to dark matter

- Dark Matter (DM) is one of the most compelling issue for physics beyond the Standard Model.
   Many astrophysics and cosmological observations provide evidences for its existence:
- F. Zwicky, 1933

Virial Theorem:  $2E_{kine} = - U$ 

 $< v(r)^2 >= GM(r)/r$ 

#### V. Rubin, 1970s



#### Gravitational Lensing



#### Light dark sectors

Possibility of *light dark sectors* motivates the search for a *DM mediator* (φ):



 $\rightarrow$  According to the spin and parity of new mediator, 3 renormalizable portals with dimensionless couplings are allowed by SM symmetries: SMS \_ H SM  $\overline{SM}$ Scalar Naturally included in the context of light dark sectors  $\rightarrow$  much more generic 3) Neutrino portal + a not-renormalizable pseudo-scalar portal assuming Axion-Like Particles  $\mathscr{L}_a = \frac{1}{f_s} a F^{\mu\nu} \tilde{F}_{\mu\nu}$ (ALPs) as mediators: L.Zani, B'EAUTY2020 - Search for low-mass NP states at BaBar

#### Physics at B-factories



BaBar: PEP-II e<sup>+</sup>e<sup>-</sup> collider, SLAC, USA, 1999–2008 Year Belle: KEKB e+e- collider, KEK, Tsukuba, Japan, 1999–2010

## $B^{\pm} \rightarrow K^{\pm}a$ : analysis strategy

- Search for the process B<sup>±</sup> → K<sup>±</sup>a, a → γγ by looking at narrow peaks in the diphoton invariant mass spectrum → Promising signature searched for the first time!
- Extract from unbinned maximum likelihood fits the signal yields and measure the branching fraction  $BF(B^{\pm} \rightarrow K^{\pm}a, a \rightarrow \gamma\gamma)$  for 0.1 GeV  $< m_a < 4.78$  GeV
- Exclude mass intervals in vicinity of peaking  $\pi^0$ ,  $\eta$ ,  $\eta'$  backgrounds: 0.1-0.175 GeV, 0.45-0.63 GeV, 0.91-1.01 GeV
- For m  $_a < 2.5$  GeV , ALPs can be long lived  $\rightarrow$  determine signal BFs for  $c\tau_a =$  1, 10, 100 mm

#### **Monte Carlo Simulation**

**Signal** (EvtGen): promptly decaying samples for 24 ALP mass points (0.1-4.78 GeV), long-lived samples for 16 ALP mass points (0.1-2.5 GeV)

Background (weighted to data luminosity):  $e^+e^- \rightarrow q\bar{q}$  (JetSet),  $e^+e^- \rightarrow B\bar{B}$  (EvtGen)+ twolepton final states (KKMC + Tauola)

## $B^{\pm} \rightarrow \, K^{\pm}a$ : selection variables

- 13 BDT training observables:
  - $m_{\rm ES}$
  - $\Delta E$
  - cosine of angle between sphericity axes of  $B^{\pm}$  candidate and rest of event (ROE)
  - PID info for kaon candidate
  - 2nd Legendre moment of ROE, calculated relative to  $B^{\pm}$  thrust axis
  - helicity angle of most energetic photon, and of kaon

- energy of most energetic photon in a candidate
- invariant mass of ROE
- multiplicity of neutral clusters
- invariant mass of diphoton pair, with 1 photon in  $B^{\pm}$ candidate and 1 photon in ROE, closest to each of  $\pi^0, \eta, \eta'$

### $B^{\pm} \rightarrow K^{\pm}a$ : final selections

- Optimized BDT output selections with Punzi FOM:
  - <sup>–</sup> Continuum-trained BDT output > 0.13



L.Zani, BEAUTY2020 - Search for low-mass NP states at BaBar

## $B^{\pm} \rightarrow K^{\pm}a$ : systematic uncertainties

- Assess uncertainty on signal yield from fit by varying order of polynomial for continuum background (3rd-order for  $m_a < 1.35 \text{ GeV}$ , constant at higher mass), varying shape of peaking background within uncertainties, and using next-nearest neighbor for interpolating signal shape
  - Dominates total uncertainty for some masses in vicinity of  $\,\pi^0/\eta\,$
- Systematic uncertainty on signal yield from varying signal shape width within uncertainty is on average 3% of statistical uncertainty
- 6% systematic uncertainty on signal efficiency, derived from data/MC ratio in vicinity of  $\eta^\prime$
- Other systematic effects negligible by comparison, including on limited signal MC statistics, luminosity

#### Dark leptophilic scalar: simulation details

- Signal (MadGraph): 36 mass points of promptly decaying  $\varphi_{\perp}$  samples + long-lived samples up to  $c\tau_{\omega \perp} = 300$  mm
- Background (weighted to data luminosity): e+e- → qq (JetSet), e+e- → (BB, ↑(2S, 3S)) (EvtGen)+ radiative dilepton final states (BHWIDE, KKMC + Tauola)

### Dark leptophilic scalar: BDT training variables

#### Input distributions used in dimuon BDT:

- Ratio of second to zeroth Fox-Wolfram moment of all tracks and neutrals.
- Invariant mass of the four track system, assuming the pion (muon) mass for the tracks originating from the tau ( $\phi_{\perp}$ ) decays.
- Invariant mass and transverse momentum of all tracks and neutrals.
- Invariant mass squared of the system recoiling against all tracks and neutrals.
- Transverse momentum of the system recoiling against all tracks and neutrals.
- Number of neutral candidates with an energy greater than 50 MeV.
- Invariant masses of the three track systems formed by the  $\phi_{L}$  and the remaining positively or negatively charged tracks.
- Momentum of each track from  $\phi_{\perp}$  decays.
- Angle between the two tracks produced by the tau decay.
- Variable indicating if a track has been identified as a muon or an electron by PID algorithm for each track.

## Dark leptophilic scalar: BDT training variables

Input distributions used in dielectron BDT:

- Transverse momentum of the system recoiling against all tracks and neutrals.
- Energy of the system recoiling against all tracks and neutrals.
- Number of tracks identified as electron candidates by a PID algorithm applied to each track.
- Angle between  $\phi_{\scriptscriptstyle L}$  candidate momentum and closest track produced in tau decay.
- Angle between  $\phi_{\,\scriptscriptstyle L}$  candidate momentum and farthest track produced in tau decay.
- Angle of  $\phi_{\,\scriptscriptstyle L}$  candidate relative to the beam in the center-of-mass frame.
- Angle between the two tracks produced by the tau decay.
- Angle between  $\phi_{\,\scriptscriptstyle L}$  candidate and nearest neutral candidate with E > 50 MeV.
- Energy of nearest neutral candidate (with E > 50 MeV) to  $\phi_{\rm L}$  candidate.
- Total energy in neutral candidates, each of which has an energy greater than 50 MeV.
- Distance between beamspot and  $\phi_{\perp}$  candidate vertex.
- Uncertainty in the distance between beamspot and  $\phi_{\perp}$  candidate decay vertex.
- $\phi_{\scriptscriptstyle L}$  candidate vertex significance, defined by the beamspot-vertex distance divided by its uncertainty.

- $\phi_{\rm L}$  candidate vertex significance, defined by the beamspot-vertex distance divided by its uncertainty.
- Angle between the  $\phi_{\perp}$  candidate momentum, and line from beamspot to  $\phi_{\perp}$  decay vertex.
- Distance of closest approach to be amspot of e - in  $\phi_{\rm L}$  candidate.
- Distance of closest approach to be amspot of e + in  $\phi_{\,\scriptscriptstyle L}$  candidate.
- Transverse distance between  $\phi_{\perp}$  decay vertex and best-fit common origin of  $\tau$  candidates and  $\phi_{\perp}$  candidate.
- $\chi$  2 of the kinematic fit to the  $\phi_{\,\scriptscriptstyle L}\,$  and  $\tau$  candidates constraining their origin to the same production point.
- $\chi$  2 of the kinematic fit of the  $\phi_{\,\scriptscriptstyle L}\,$  candidate with the constraint that the e + e pair is produced from a photon
- conversion in detector material.
- Dielectron mass for  $\phi_{\,\scriptscriptstyle L}\,$  candidate when re-fit with the photon conversion constraint.8