

Rare B Decay Analyses at Belle

Seema Choudhury (ph16resch11007@iith.ac.in) on behalf of the Belle collaboration

IIT Hyderabad, India

Sep 22 2020

19th International Conference on *B*-Physics at Frontier Machines, Beauty 2020

arXiv:1908.01848v2 and submitted to JHEP

2 Belle Experiment

(3) Test of LFU (R_K) in $B \to K\ell\ell$ decays

(4) Isospin Asymmetry (A_l) in $B \to K\ell\ell$ decays

5 dB/dq^2 for $B \to K\ell\ell$

(6) LFV in $B \to K\ell\ell'$ decays

Summary

《口》《聞》《臣》《臣》 臣

Introduction

• The rare decay $B \to K^{(*)}\ell\ell$ involves $b \to s$ quark level transition, which are flavor changing neutral currents. These processes occur through penguin loop and box diagrams in standard model (SM).

- Global analysis of B decays hints at lepton flavor non universality.
- These decays are highly suppressed and very small BR (\mathcal{O} (10⁻⁷)).
- They are very sensitive to new physics.
- The new physics can contribute by enhancing or suppressing the decay rates or modifying the angular distribution of the final state particles.

Introduction

A

• The amplitude of a hadron decay process [arXiv:hep-ph/9806471] is described as:

• NP can affect SM operator contributions (Wilson coefficients) and/or enter through new operators.

• Contribution of C_7 , C_9 and C_{10} depends on q^2 (invariant mass square of two leptons). < • • • • • •

S. Choudhury (IIT Hyderabad, India)

A B K A B K

- The Belle experiment was located at the KEKB accelerator in Tsukuba, Japan.
- Data taking from 1999 to 2010.
- Data collected at $\Upsilon(4S)$: 711 fb⁻¹ = 772 million $B\bar{B}$ pairs.

$$e^+e^-
ightarrow \Upsilon(4S)
ightarrow Bar{B}$$

Test of LFU $(R_{\mathcal{K}})$ in $B \to \mathcal{K}\ell\ell$

- SM prediction is very accurate. $R_{K}^{(SM)} = 1 \pm O$ (10⁻²) [Eur. Phys. J. C76, 440 (2016)]
- LHCb [PRL 113, 151601(2014)] shows deviation from SM $R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036$ in $q^{2} = [1 - 6] \text{ GeV}^{2}/c^{4} : 2.6\sigma$ tension for 3 fb^{-1} data sample (2011-12 data).
- LHCb [PRL 122, 191801 (2019)] shows $R_K([1.1-6]) = 0.846^{+0.016}_{-0.054}, 2.5\sigma$ deviation for 5 fb⁻¹ data sample (2011 2016 data).
- The value of R_K for Belle [PRL 103, 171801 (2009)] was consistent with unity for the whole q^2 region within the uncertainty limit, measured for a data sample of 605fb^{-1} .

 We want to exploit maximum from the data already collected (711 fb⁻¹) and make the extrapolation to Belle II reliable.
 < □ > < □ > < □ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ > < ≥ >

5ep 22 2020 6 / 1

Test of LFU (R_K) in $B \to K\ell\ell$ decays at Belle

[arXiv:1908.01848v2]

- This measurement of R_K is with Belle full data sample of 711 fb⁻¹, while the previous measurement was with 605 fb⁻¹.
- We perform a multi-dimensional fit using $M_{\rm bc}$, ΔE and background suppression variable to extract the signal yield.
- The R_K values are given in five q^2 bins and also the whole q^2 region.
- We calibrate the signal component with $B \rightarrow J/\psi K$ sample and continuum $(e^+e^- \rightarrow q\bar{q})$ background with off-resonance data sample (89 fb⁻¹).
- The leptonID systematics (major source) were improved significantly.

Particle Selection Criteria

- The decay mode reconstructed are $B^+ \to K^+ \ell \ell$ and $B^0 \to K^0_{\mathsf{S}} \ell \ell$, where $\ell \ell = \mu \mu$ or ee.
- K^{\pm} , μ^{\pm} and e^{\pm} particles satisfying PID are selected from tracks near IP. K_S^0 are selected using K_S^0 displaced vertex properties and with a mass window, 3σ about K_S^0 nominal mass.
- Kinematic variables which distinguish signal from background are

$$M_{
m bc} = \sqrt{E_{beam}^2/c^4 - |p_B|^2/c^4} \ \Delta E = E_B - E_{beam}$$

• The requirement on kinematic variables are $5.20 < M_{\rm bc} < 5.30~{\rm GeV}/c^2~{\rm and}~-0.1 < \Delta E < 0.25~{\rm GeV}$

ういつ 正則 スポット ポポット きょう

Test of LFU (R_K) in $B \to K \ell \ell$ decays at Belle

Background suppression and NN translation

- The irreducible peaking background coming from $B \to J/\psi(\to \ell \ell)K$ and $B \to \psi(2S)(\to \ell \ell)K$ are removed by q^2 veto.
- The peaking background are reduced by applying invariant mass veto.

Mode	Peaking source	Veto
$B^+ ightarrow K^+ \mu^+ \mu^-$	$B^+ ightarrow ar{D^0} (ightarrow K^+ \pi^-) \pi^+$	$M_{K^+\mu^-} \notin [1.85 - 1.88]$
$B^+ ightarrow K^+ \mu^+ \mu^-$	$B^+ ightarrow J/\psi (ightarrow \mu^+ \mu^-) K^+$	$M_{K^+\mu^-} \notin [3.06 - 3.13]$

- Small contribution of $B \to K \pi \pi$ decay is studied with all intermediate resonances and fixed in the fit.
- The *NN* is trained with some event shape, vertex quality and kinematic variables to suppress the background from continuum and generic *B* decays.
- The NN output (O) is translated to O' using the formula

$$\mathcal{O}' = \log \frac{\mathcal{O} - \mathcal{O}_{\min}}{\mathcal{O}_{\max} - \mathcal{O}}$$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

• $\mathcal{O}_{\min} = -0.6$ reduces the background \sim 75%, with signal efficiency loss of 4 – 5%.

• The signal yield is extracted by performing extended maximum likelihood fit in 3-dimensions *i.e.*, $M_{\rm bc}$, ΔE and \mathcal{O}' .

continuum, generic B, $[\pi^+ J/\psi]$, signal, total

- These are world's most precise measurements because of dramatic improvement in systematic uncertainties (especially leptonID systematic is < 1%).
- $R_{\kappa}(J/\psi) = 0.994 \pm 0.011 \pm 0.010$ is consistent with SM expectation.

$B \to K \ell \ell$ results

[arXiv:1908.01848v2]

- Extended maximum likelihood fit is performed in 3-dimensions *i.e.*, $M_{\rm bc}$, ΔE and \mathcal{O}' .
- $B \to J/\psi (\to \ell \ell) K$ is used as a control sample to calibrate the signal PDF of $B \to K \ell \ell$.
- Example fit of $B^+ \to K^+ \mu \mu$ and $B^+ \to K^+ e^+ e^-$ for $q^2 > 0.1 \text{ GeV}^2/c^4$.

 $\mathcal{B}(\mathbf{B}^{0} \to \mathbf{K}^{0}\ell\ell) = (3.51^{+0.69}_{-0.60} \pm 0.10) \times 10^{-7}.$

R_{K^+} , R_{K^0} and R_K results from Belle

- $R_{\kappa}(J/\psi)$ is 0.994 ± 0.011 ± 0.010.
- R_{K^+} , R_{K^0} and R_K are measured for [0.1 , 4.0], [4.0 , 8.12], [1.0 , 6.0], [10.2, 12.8], > 14.18, and > 0.1 q^2 bins.

- The measurements are found to be consistent with SM prediction.
 The R⁺_κ result of Belle for q² ∈ [1.0, 6.0] GeV²/c⁴ bin is consistent with SM expectation within 1.1σ
- The R_K^+ result of Belle for $q^2 \in [1.0, 6.0]$ GeV²/c⁴ bin is consistent with SM expectation within 1.1σ and deviates from LHCb [PRL 122, 191801 (2019)] by 1.6σ .

Isospin Asymmetry (A_l) in $B \rightarrow K\ell\ell$ decays

$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) - \mathcal{B}(B^{+} \to K^{+}\ell\ell)}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) + \mathcal{B}(B^{+} \to K^{+}\ell\ell)}$$

- The SM prediction for A₁ is O(1%) [JHEP 01, 074 (2003), JHEP 02, 010 (2013), PRD D88, 094004 (2013)].
- BaBar [PRL 102, 091803(2009)] has reported 3.2 σ in $B \to K\ell\ell$ for low q^2 bin using 384 million $B\bar{B}$ pairs.
- Belle [PRL 103, 171801 (2009)] measurement with 657 million $B\bar{B}$ pairs, shows a deviation of 1.75 σ from null value.
- LHCb [JHEP 07, 133 (2012)] shows deviation in $A_l(B \rightarrow K\mu\mu)$ measured for 1 fb⁻¹ data sample, the deviation below $q^2 < 4.3 \text{ GeV}^2/c^4$ and above $q^2 > 16 \text{ GeV}^2/c^4$ bin more significant. The significance of the deviation from zero integrated across q^2 is 4.4 σ .
- LHCb [JHEP 06, 133 (2014)] shows $A_l(B \rightarrow K \mu \mu)$ with 3 fb⁻¹ data sample and found negative asymmetry but the results are more consistent with SM expectation.

A_I results from Belle

[arXiv:1908.01848v2]

- The $A_I(B \to J/\psi K)$ is $-0.002 \pm 0.006 \pm 0.014$.
- A_l is measured for $B \to K\mu^+\mu^-$, $B \to Ke^+e^-$ and $B \to K\ell^+\ell^-$ in [0.1, 4.0], [4.0, 8.12], [1.0, 6.0], [10.2, 12.8], > 14.18, and > 0.1 q^2 bins.

- The A_l values for all bins show negative asymmetry.
- The isospin asymmetry is found for $B \to K\mu^+\mu^-$ at a level of 2.6 σ for the bin of $1 < q^2 < 6 \text{ GeV}^2/c^4$.

S. Choudhury (IIT Hyderabad, India)

dB/dq^2 for $B o K\ell\ell$

- dB/dq^2 is measured for $B^+ \to K^+ \ell^+ \ell^-$ and $B^0 \to K^0 \ell^+ \ell^-$ in [0.1 , 4.0], [4.0 , 8.12], [1.0 , 6.0], [10.2, 12.8], and > 14.18 bins.
- The theoretical predictions is from the light-cone sum rule and lattice QCD calculations [JHEP 07, 067 (2011), JHEP 01, 107 (2012)].

The dB/dq² results for B⁺ → K⁺µ⁺µ⁻ is consistent with SM prediction for almost all q² bins, where LHCb [JHEP 06, 133 (2014)] seems to have lower values.

- In many theoretical models [PRL 114, 091801 (2015)], LFV accompanies LFU violation.
- With neutrino mixing, LFV is possible at rates far below the current experimental sensitivity[Nucl. Phys.B853, 80 (2011)].
- In case of signal, this will signify physics beyond SM.
- The most stringent upper limits on $B^+ \rightarrow K^+\mu^+e^-$ and $B^+ \rightarrow K^+\mu^-e^+$ modes are 6.4×10^{-9} and 7.0×10^{-9} at 90% CL and set by LHCb [PRL 123, 241802 (2019)].
- The $B^0 \rightarrow K^0 \mu^{\pm} e^{\mp}$ decays were seached by BaBar [PRD 73, 092001 (2006)] and 90% CL upper limit on BR is 2.7 × 10⁻⁷.

イロト イヨト イヨト イヨト

- The $B \to K\ell\ell'$ analysis is done in the similar way as $B \to K\ell\ell$ decays.
- Peaking backgrounds:
 - Background from $B \rightarrow J/\psi(\rightarrow ee)K$:

Mode	description	Veto (GeV/ c^2)		
$B^+ ightarrow K^+ \mu^+ e^-$	e is misidentified as K and K as μ	$M_{K^+e^-} \in (2.95, 3.11)$		
$B^+ ightarrow K^+ \mu^+ e^-$	e is misidentified as μ	$M_{\mu^+e^-} \in (3.02, 3.12)$		
$B^+ ightarrow K^+ \mu^- { m e}^+$	e is misidentified as μ	$M_{\mu^+e^-} \in (3.02, 3.12)$		
$B^0 ightarrow K^0_S \mu^\pm e^\mp$	e is misidentified as μ	$M_{\mu^+e^-} \in (3.04, 3.12)$		

- A tiny contribution from $B^+ \to \bar{D^0}(K^+\pi^-)\pi^+$ is removed by $M_{K^+\mu^-} \in (1.85, 1.88) \text{ GeV}/c^2$.
- Small contribution of $B \to K \pi \pi$ decay is studied with all intermediate resonances and fixed in the fit.
- The signal yield is extracted by performing maximum likelihood fit in 3-dimensions, $M_{\rm bc}$, ΔE and \mathcal{O}' .

- There are 11.6^{+6.1}_{-2.5}, 1.7^{+3.6}_{-2.2} and $-3.3^{+4.0}_{-2.8}$ signal events for $B^+ \to K^+ \mu^+ e^-$, $B^+ \to K^+ \mu^- e^+$ and $B^0 \to K^0_8 \mu^\pm e^\mp$ modes, respectively.
- The significance of signal yield for $B^+ \rightarrow K^+ \mu^+ e^-$ channel is 3.2 σ considering statistical and systematic uncertainties.
- ${\scriptstyle \bullet}\,$ The excess in $B^+ \to {\cal K}^+ \mu^+ e^-$ is driven by one golden event.

Mode	ε (%)	$N_{\rm sig}$	$N_{ m sig}^{ m UL}$	${\cal B}^{ m (UL)}$ (10 $^{-8}$)
$B^+ ightarrow K^+ \mu^+ e^-$	29.4	$11.6^{+6.1}_{-5.5}$	19.9	8.5
$B^+ ightarrow K^+ \mu^- e^+$	31.2	$1.7^{+3.6}_{-2.2}$	7.5	3.0
$B^0 o K^0 \mu^\pm e^\mp$	20.9	$-3.3^{+4.0}_{-2.8}$	3.0	3.8

• The existing limit on the neutral decay mode is improved by an order of magnitude.

イロト イロト イヨト 小田 ト 油

Summary

- $\mathcal{B}(B^+ \to J/\psi K^+)$ and $\mathcal{B}(B^0 \to J/\psi K^0)$ are most precise measurements to date.
- $R_K(J/\psi)$ and $A_I(B \rightarrow J/\psi K)$ are consistent with SM expectations.
- The R_K values for different q^2 bins are consistent with SM predictions.
- Our result of R_{K^+} for $1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$ deviates from LHCb result by 1.6σ .

• The A₁ values for almost all the bins show a negative asymmetry.

- A_l shows 2.6 σ deviation for $B \rightarrow K \mu \mu$ mode in $1 < q^2 < 6 \text{ GeV}^2/c^4$ bin.
- The dB/dq^2 results for $B^+ \rightarrow K^+ \mu^+ \mu^-$ is consistent with SM prediction for all q^2 bins, where LHCb seems to have lower values.
- The values for neutral B are lower than theoretical prediction.
- The upper limit on BR for $B^+ \to K^+ \mu^\pm e^\mp$ modes are $\mathcal{O}(10^{-8})$.
- We improves the exising upper limit on $B^0 \rightarrow K^0 \mu^{\pm} e^{\mp}$ mode by an order of magnitude, *i.e.*, 3.8×10^{-8} .

We extracted the most from Belle data sample and pass the relay to Belle II.

イロト 人口 アイビア 人

Bin	R_{K^+}	$ $ R_{K^0}	R _K
[0.1, 4.0]	$0.98^{+0.29}_{-0.26}\pm 0.02$	$1.62^{+1.31}_{-1.01}\pm 0.02$	$1.01^{+-0.28}_{-0.25}\pm 0.02$
[4.0, 8.12]	$1.29^{+0.44}_{-0.39} \pm 0.02$	$0.51^{+0.41}_{-0.31} \pm 0.01$	$0.85^{+0.30}_{-0.24}\pm0.01$
[1.0, 6.0]	$1.39^{+0.36}_{-0.33} \pm 0.02$	$0.55^{+0.46}_{-0.34}\pm 0.01$	$1.03^{+0.28}_{-0.24}\pm 0.01$
[10.2, 12.8]	$1.96^{+1.03}_{0.89}\pm 0.02$	$5.18^{+17.69}_{-14.32}\pm0.06$	$1.97^{+1.03}_{-0.89}\pm0.02$
> 14.18	$1.13^{+0.31}_{-0.28}\pm 0.01$	$1.57^{+1.28}_{1.00}\pm 0.02$	$1.16^{+0.30}_{-0.27}\pm0.01$
$q^{2} > 0.1$	$1.08^{+0.16}_{-0.15}\pm 0.02$	$1.29^{+0.52}_{-0.45}\pm 0.01$	$1.10^{+0.16}_{-0.15}\pm0.02$

Bin	$A_I(B o K \mu \mu)$	$A_l(B \rightarrow Kee)$	$A_l(B \to K\ell\ell)$
[0.1, 4.0]	$-0.11^{+0.20}_{-0.17}\pm 0.01$	$-0.35^{+0.21}_{-0.17}\pm0.01$	$-0.22^{+0.14}_{-0.12}\pm0.01$
[4.0, 8.12]	$-0.34^{+0.23}_{-0.19}\pm0.01$	$0.10^{+0.20}_{-0.16} \pm 0.01$	$-0.09^{+0.15}_{-0.12} \pm 0.01$
[1.0, 6.0]	$-0.53^{+0.20}_{-0.17}\pm0.02$	$-0.13^{+0.18}_{-0.15}\pm0.01$	$-0.31^{+0.13}_{-0.11} \pm 0.01$
[10.2, 12.8]	$-0.14^{+0.24}_{-0.19}\pm0.01$	$-0.55^{+0.73}_{-0.60}\pm0.01$	$-0.18^{+0.22}_{-0.18}\pm0.01$
> 14.18	$-0.08^{+0.17}_{-0.15}\pm0.01$	$-0.24^{+0.23}_{-0.19}\pm0.01$	$-0.14^{+0.14}_{-0.12}\pm0.01$
$q^2 > 0.1$	$-0.16^{+0.09}_{-0.10}\pm0.01$	$-0.24^{+0.11}_{-0.10}\pm0.01$	$-0.19^{+0.07}_{-0.06}\pm 0.01$

-11

・ロト ・回 ト ・ヨト ・ヨト

Table: Relative systematic uncertainties (%) for $\mathcal{B}(B \to J/\psi K)$, $R_K(J/\psi)$, and absolute uncertainty for $A_I(B \to J/\psi K)$.

Sources	$B^+ ightarrow J/\psi K^+$	$B^0 ightarrow J/\psi K_s^0$	$R_{K^+}(J/\psi)$	$R_{K^0}(J/\psi)$	$A_I(J/\psi K)$
Lepton identification	± 0.68	± 0.68	± 0.97	± 0.97	-
Kaon identification	± 0.80	_	_	_	± 0.007
K_{S}^{0} identification	_	± 1.57	_	_	± 0.002
Track reconstruction	± 1.05	± 1.40	_	_	± 0.002
Efficiency calculation	± 0.14	± 0.18	± 0.20	± 0.25	± 0.001
Number of <i>B</i> \$\overline{B}\$ pairs	± 1.40	± 1.40	_	_	_
$f^{+-(00)}$	± 1.20	± 1.20	_	_	± 0.012
\mathcal{O}_{\min}	± 0.16	± 0.28	± 0.24	± 0.39	± 0.001
PDF shape parameters	+0.15 - 0.20	$^{+0.05}_{-0.10}$	$^{+0.22}_{-0.31}$	$^{+0.10}_{-0.20}$	± 0.002
Total	±2.38	±2.90	$^{+1.05}_{-1.07}$	$^{+1.08}_{-1.09}$	± 0.014

・ロト ・四ト ・ヨト ・ヨト