Heavy flavor production in *pp* and *p*Pb collisions at LHCb

Matt Durham, on behalf of the LHCb collaboration Los Alamos National Laboratory

19th International Conference on B-Physics at Frontier Machines, BEAUTY 2020

- Introduction: heavy flavor production in pp and pA collisions
- Charm/bottom dijet production
 - LHCb-PAPER-2020-018, in preparation
- Double charm production in pPb collisions
 - arXiv:2007.06945, submitted to PRL
- Prompt X(3872) suppression in high-multiplicity pp collisions
 - arXiv:2009.06619, submitted to PRL

- Introduction: heavy flavor production in pp and pA collisions
- Charm/bottom dijet production
 - LHCb-PAPER-2020-018, in preparation
- Double charm production in pPb collisions
 - arXiv:2007.06945, submitted to PRL
- Prompt X(3872) suppression in high-multiplicity pp collisions
 - arXiv:2009.06619, submitted to PRL

$$d\sigma(Q^2,\sqrt{s})_{pA\to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1,Q^2) \otimes Af_i^A(x_2,Q^2) \otimes d\hat{\sigma}(Q^2,x_1,x_2)_{i,j\to a+X}$$

$$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$

Measureable cross section
Calculable with pQCD

• Precision tests of perturbative QCD

$$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$

Measureable cross section Linked by PDFs Calculable with pQCD^{*}

- Precision tests of perturbative QCD
- Constrains parton distribution function in protons/nuclei

$$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$

Measureable cross section Linked by PDFs Calculable with pQCD Calculable with pQCD

- Precision tests of perturbative QCD
- Constrains parton distribution function in protons/nuclei
- Probes QCD energy loss and possible hydrodynamic effects in nucleus

22 Sep 2020

$$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$

Measureable cross section Linked by PDFs Calculable with pQCD Calculable with pQCD

- Precision tests of perturbative QCD
- Constrains parton distribution function in protons/nuclei
- Probes QCD energy loss and possible hydrodynamic effects in nucleus
- Quarkonia breakup is sensitive to binding energy of hadrons

- Introduction: heavy flavor production in pp and pA collisions
- Charm/bottom dijet production
 LHCb-PAPER-2020-018, in preparation
- Double charm production in pPb collisions
 - arXiv:2007.06945, submitted to PRL
- Prompt X(3872) suppression in high-multiplicity pp collisions
 - arXiv:2009.06619, submitted to PRL

22 Sep 2020

- LHCb has a unique forward acceptance: sensitive to high and low Bjorken-x values, where PDFs are not well constrained
- Many new physics searches for massive particles look for decays to *b* and *c* jets; constraints from heavy quark measurements can clarify background contributions

JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30, 1530022 (2015)

- Charm and bottom dijet yields measured as function of leading jet η, transverse momentum, rapidity difference, and invariant mass.
 - Anti- $k_{\rm T}$ algorithm with R= 0.5
- General agreement with shape of pQCD calculations, yields consistent with low edge
- Data uncertainties < pQCD uncertainties, dominated by uncertainties on renormalization and factorization scales, and PDF uncertainties.
- Data provides new constraints

- Ratio of $c\bar{c}/b\bar{b}$ dijet cross sections
- Some uncertainties on predictions cancel in the ratio
- In general, good agreement with pQCD NLO calculations

- Introduction: heavy flavor production in pp and pA collisions
- Charm/bottom dijet production
 - LHCb-PAPER-2020-018, in preparation
- Double charm production in pPb collisions
 arXiv:2007.06945, submitted to PRL
- Prompt X(3872) suppression in high-multiplicity pp collisions
 - arXiv:2009.06619, submitted to PRL

Single Parton Scattering

Double Parton Scattering

Measure like-sign and opposite-sign pairs of D mesons (D⁰, D⁺, D_s⁺) and J/ ψ D: correlated in SPS, uncorrelated in DPS

- Correlations can be modified relative to pp due to nuclear effects:
 - Modifications of the nuclear PDF (gluon saturation?)
 - Energy loss crossing nucleus, hydrodynamic effects?

22 Sep 2020

22 Sep 2020

BEAUTY 2020

- Introduction: heavy flavor production in pp and pA collisions
- Charm/bottom dijet production
 - LHCb-PAPER-2020-018, in preparation
- Double charm production in pPb collisions
 - arXiv:2007.06945, submitted to PRL
- Prompt X(3872) suppression in high-multiplicity pp collisions
 arXiv:2009.06619, submitted to PRL

X(3872) - a puzzle

Recently renamed $\chi_{c1}(3872)$ by PDG

- The first exotic hadron discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003, PRL 91 262001 (2003)
- Quantum numbers inconsistent with expected charmonium at measured mass, PRL 110 222001 2013

X(3872) - a puzzle

Recently renamed $\chi_{c1}(3872)$ by PDG

- The first exotic hadron discovered in $I/\psi \pi^+\pi^-$ mass spectrum from B decays by Belle in 2003, PRL 91 262001 (2003)
- Quantum numbers inconsistent with expected charmonium at measured mass, PRL 110 222001 2013
- In general, two different classes of X(3872) structure have been proposed:

Tightly bound via color exchange between diquarks Small radius, ~1 fm

X(3872) - a puzzle

Recently renamed $\chi_{c1}(3872)$ by PDG

- The first exotic hadron discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003, PRL 91 262001 (2003)
- Quantum numbers inconsistent with expected charmonium at measured mass, PRL 110 222001 2013
- In general, two different classes of X(3872) structure have been proposed:

Tightly bound via color exchange between diquarks Small radius, ~1 fm

Technique from heavy ion collisions:

Prompt X(3872) can interact with other particles and break up, magnitude of disruption depends on binding energy

Invariant Mass Spectrum

Reconstruct the $\mu^+\mu^-\pi^+\pi^-$ final state from the decays:

$$K(3872) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\rho(\rightarrow \pi^+\pi^-)$$
$$\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$$

Direct comparison between conventional charmonium $\psi(2S)$ and exotic X(3872) via ratio of cross sections:

$$\frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \times \frac{\mathcal{B}[\chi_{c1}(3872) \to J/\psi \, \pi^+ \pi^-]}{\mathcal{B}[\psi(2S) \to J/\psi \, \pi^+ \pi^-]}$$

22 Sep 2020

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

22 Sep 2020

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by \boldsymbol{b} decay branching ratios.

Calculations from arXiv:2006.15044

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c} \right)^n \right\rangle$$

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Increasing suppression of **X**(**3872**) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Calculations from arXiv:2006.15044

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c}\right)^n \right\rangle$$

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

tracks

Increasing suppression of **X**(**3872**) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Calculations from arXiv:2006.15044

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c} \right)^n \right\rangle$$

Compact tetraquark of size 1.3 fm gradually dissociated as multiplicity increases

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

tracks

Fixed target at LHCb: SMOG II

https://cds.cern.ch/record/2673690/files/LHCB-TDR-020.pdf

Upgraded SMOG system at LHCb allows greatly increased rates of beam+injected gas collisions

No centrality limitations in p+gas or Pb+gas at LHCb

Installed last month!

Example SMOG2 pAr at 115 GeV for one year

Int. Lumi.	80 pb-1
Sys.error of J/Ψ xsection J/Ψ yield	~3% 28 M
D ⁰ yield	280 M 2.8 M
Ψ' yield	280 k
$\Upsilon(1S)$ yield	24 k
$DY \mu^+\mu^-$ yield	24 k

Large heavy flavor samples Access to exotic states near RHIC energies

- Heavy quark production at hadron colliders probes a range of phenomena:
 - Precision tests of pQCD
 - Constraints on nPDFs

22 Sep 2020

- Heavy quark production mechanisms
- LHCb is exploring new observables to constrain models of exotics
- Major upgrades to fixed target system, detector, and DAQ promise a rich heavy quark program at LHCb in the near future

BACKUPS

THEOR Probing X(3872) structure via interactions Alamos with the underlying event

Prompt production:

- X(3872) produced at collision vertex can be subject to further interactions with co-moving particles (medium?) produced in the event
- Potentially subject to breakup effects

Production in *b*-decays:

- Hadrons containing *b* travel down the beampipe and decay away from the primary vertex and decay in vacuum
- X(3872) from decays not subject to further interactions
- Control sample

Event display of $B_s^0 \rightarrow \mu^+ \mu^-$ candidate, PRL 118 191801 (2017) 40

Deuteron production vs multiplicity

Deuterons – often considered a neutron+proton hadronic molecule

22 Sep 2020

The LHCb Detector

JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30, 1530022 (2015)

 $X(3872) \rightarrow J/\psi \pi^+\pi^-$

Vertex detector (VELO): -Separation of prompt and *b*decay production -Number of VELO tracks gives measure of event activity

Two RICH detectors: -Pion identification

Muon System: -Layers of absorber/tracking -Muon hardware trigger

Prompt / b-decay separation

Effects of Binding Energy

- $\left. \frac{\Upsilon(2S,3S)}{\Upsilon(1S)} \right|_{\Upsilon(1S)}$ • Ratios of $\frac{\psi(2S)}{I/\psi}$ and
- In general, final state effects are required to explain difference in suppression between states
- Prevalent in regions with high particle multiplicity
- Weakly bound hadronic molecules may show similar effects.

							<u>D</u> D [*] Molecule
state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'	X(3872)
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69	3.872
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05	$\begin{array}{c} 0.00001 \pm \\ 0.00027 \end{array}$

Satz, J. Phys. G 32 (3) 2006

22 Sep 2020

os Alamos

co-movers