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String theory provides a large number of different low-energy effective
theories which have an ultraviolet completion to quantum gravity

In general, the different theories have different properties, like number of
particles, gauge groups, etc..

But there are some (rare) features which, as far as we can tell, are
common to all of them

The Swampland program is motivated by the existence of such apparently
universal features, with an aim to understand if they are always required
by any theory of quantum gravity

[Vafa '05]



An old idea is that in quantum gravity there are no U(1) global symmetries

The simplest argument is that a black hole does not reflect any global
symmetry charge on its horizon

Therefore, there are an infinite number of microstates associated to a
black hole — in contradiction with the expected finite entropy



It is possible to rephrase this argument in terms of an infinite number of
stable black hole remnants
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And we can rephrase it again in terms of an infinite number of stable
bound states
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Gauging the U(1) modifies the story
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But we recover the same physics in the g — 0 limit



The Weak Gravity Conjecture proposes that we still should not have the
stable bound states / stable black holes (not clear that should be true)

[Arkani-Hamed, Motl, Nicolis, Vafa '06 ]

If so, then we must have a charged particle with mass smaller than charge
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The logic naturally leads to the expectation that in the case of massless
scalar fields we should demand the particle is self-repulsive under all forces
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So should formulate the WGC as

29°q*My; = m?* + u*M;

[EP’17]



Argument receives support from string theory
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No violation found to date (but difficult to test in non-supersymmetric settings)



In anti-de Sitter space (AdS), the separation of a particle from its copy is
bounded by the radius

It is more natural/accurate to formulate the conjecture as:

Positive Binding Conjecture: For a (weakly coupled) gravitational theory with a U(1)
gauge field, there should exist at least one charged particle in the theory, with charge of order

one, which has a non-negative self-binding energy.

For example, consider 5-dimensional AdS with charged scalar
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Binding energy is calculated (at tree level) as [Fitzpatrick, Shih ‘11]
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The binding energy is dual to the anomalous dimension of the operator ¢?
Vo2 = Ap?) — 2A(9)

Where ¢“ is the leading operator in the Operator Product Expansion of ¢pX¢

So, if we write the dimension of operators as a function of charge g we have
the conjecture:

A(2q) —2A(q) =0



We can then formulate this more generally as:

Abelian Convex Charge Conjecture: Consider any CFT with a U(1) global symme-
try. Denote by A (q) the dimension of the lowest dimension operator of charge q. Then this

must satisfy a convex-like constraint
A (n1qo + n2qo) = A (n1qo) + A (n2qo) (1.1)

for any positive integers nq, ny, for some qy of order one.



What is g, ? From the bound-states intuition we expect it to be the charge
of the operator with the smallest dimension-to-charge ratio in the theory

It is clear that if we define it that way, the conjecture follows almost trivially:

A(n qo) > A(qo)
nqo do

So, the non-trivial statement is: q is of order one

This is capturing the WGC: if the operator could form ‘bound states’ then the
minimum dimension-to-charge ratio would occur at large g



Now we make a ‘wild leap’:

Since the formulation seems unrelated to the existence of a weakly-curved
gravity dual, we propose that the conjecture holds for any CFT

For example, the formulation has no problem handling a gravity dual with an
infinite number of massless higher spin fields (it makes no reference to
gravitons or gauge fields)



Before testing the conjecture, we formulate a more general version:

Convex Charge Conjecture: Consider any CFT with a continuous global symmetry
group G, and consider a simple factor Gy C G. Denote by A (1) the dimension of the lowest
dimenston operator in the representation v of GG. Then, there is always some representation
ro, which is non-trivial in Gy and has weights of order one, such that the dimensions A(q) =

A(Sym?(rg)) satisfy a convex-like constraint

~ ~

A(ni+n) > A(ng) +A(ng) | (1.2)

for any positive integers ny, ny.*



Tests of the Conjecture



At large charge the spectrum is convex:
[Hellerman, Orlando, Reffert, Watanabe ‘15]
d [Monin, Pirtskhalava, Rattazi, Seibold ‘16]
A(q) ~ A qd—l [Alvarez-Gaume, Loukas, Orlando, Reffert ‘16]

For BPS states in supersymmetric theories, or for free scalar theories, the
spectrum is marginally convex:

A(q) ~Aq

In 2-dimensional CFTs a U(1) symmetry implies 2 symmetries, each one of
which can be gauged to yield a coset CFT, with spectrum



For free fermionic theories, the spectrum is not even marginally convex if
we take g, equal to the number of components of the fermion

This is because Pauli’s exclusion principle requires derivatives to be
inserted in operators with multiple fermions

For example, in 3 dimensions we have the spectrum:

A(l) =1 A(4) =6

A)=2  A(5) =8
A(3) = 4 A(6) — 10 [Komargodski, Mezei, Pal, Raviv-Moshe 21]

Therefore, any small perturbative interaction will maintain convexity

Way out: Large number of fermions



Testing in explicit theories requires some expansion parameter which
leads to some sense of weak-coupling.

We can then identify specific fields associated to the operators, and
measure convexity by

T = A (6"472) = (A (™) + A (9™) )

Requiring:

>0

/ynl 12 —



The simplest explicit theory to test it in is Wilson-Fisher U(1) in 4 — € dimensions

L= 060,06+ (6'0)° Pt toE)

Not a rigorous test, because the theory contains non-unitary operators

[Hogervorst, Rychkov, van Rees ‘15]
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[Badel, Cuomo, Monin, Rattazzi ‘19]

Convex, and remains convex for any value of (en) for large n

[Cuomo, Komargodski (Private Comm.)]



O(N) (quartic) model in 4 — € dimensions:
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Can also analyse theories using large N expansion

O(N) (quartic) model in 3 dimensions:

q 4 7 q\?2 q\3 [Alvarez-Gaume, Orlando, Reffert “19]
VARV (Q) =N [ﬁ + ? (N) + O ((N) )] [Giombi, Hyman “20]

O(N) (quartic) model in 5 dimensions (non-unitary):

[Giombi, Hyman 20]

2 3
X A (q) — N [ 34 _ 322 ( q ) + O ((i) )] [Giombi, Huang, Klebanov, Pufu, Tarnopolsky ‘19]
2N 3m° AN N [Arias-Tamargo, Rodriguez-Gomez, Russo ‘20]

O(N) (quartic) model in 6 — € dimensions (non-unitary):

X o _ —2646n1n2 Lo (@)2 [Arias-Tamargo, Rodriguez-Gomez, Russo ‘20]
e N? N [Antipin,Bersini,Sannino,Wang,Zhang ’'21]



Gauge theories, with perturbative approach:

4-dimensional SU(N,) gauge theory with Ny massless fermions and N
massless scalars has a perturbative (Banks-Zaks type) fixed point at large N

This needs to coincide with the fixed point of the quartic scalar terms

V(g) = hTr(o' oo ¢) + F(Tr(o'p))?

[Hansen, Janowski, Langaeble, Mann, Sannino, Steele, Wang '17]
[Benini, lossa, Serone ‘19]

Scalar mesons are charged under SU(N,) global symmetry (f)z — (gb*qb)n
Find (at 1-loop): v, = A(0F) —2a(07) = A(h + f) A>0

At fixed points have (fi + f) > (0, so spectrum is convex



Gauge theories with semi-classical methods:

3-dimensional U(N,) gauge theory with N fermions flows to CFT in the IR
Has global symmetry U(l)top with monopole operators charged under it

At large N¢ the dimensions of these can be computed as

A, [Pufu “13]
0.265 Ny — 0.0383 + O(1/Ny) [Dyer, Mezei, Pufu "13]
V4 0.673 Ny — 0.194 + O(1/Ny) [Chester, lliesiu, Mezei, Pufu ‘17]

1.186 N; — 0.422 + O(1/Ny)
1.786 N; — 0.706 + O(1/N;)
2462 N; — 1.04 + O(1/N,)
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Can do similar computations for large N¢ scalars (with or without quartic
terms), and also for fermions with quartic couplings (Gross-Neveu type)
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[Dyer, Mezei, Pufu ’13]

[Dyer, Mezei, Pufu, Sachdev ’15] [Dupuis, Paranjape, Witczak-Krempa ’19]
[Chester — Private Communication]

Can also add Chern-Simons term with level k, and find that monopole
spectrum becomes more convex monotonically with increasing k

[Chester, Iliesiu, Mezei, Pufo ’17] [Chester ‘21] [Chester — Private Communication]
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A simple supersymmetric counter-exampleto gy, =1 :

Can consider single chiral superfield: W= gd3

In 3 dimensions flows to IR interacting fixed point (in 4 dimensions IR free):
Global U(1)z symmetry with charges and dimensions:

2 1

Scalar: ey = %, A(2) == Fermion: qQy =

3 NOBE

g:

Requires taking g, = 2, and then convexity seems natural (but not proven)
from BPS bound:

A(2n) > n A(2)



All our examples are consistent with strong versions of conjecture:

1) q0 is charge Of /I'ghtest Charged operator Have proposed counter examples on gravity side
] in flat space for supersymmetric theories with
2) qq is smallest scalar operator charge multiple U(1)s: [Heidenreich, Reece, Rudelius ‘16]

Can test in completely strongly-coupled theories: O(2) model in 3D
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Ay EXP 1.50946(22
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)
MC | 1.51122(15)
CB | 1.51136(22)
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Summary

Proposed that the natural formulation of the WGC is in terms of the self-
binding energy of a particle

This leads to a CFT dual statement which is that the spectrum of charged
operators should be convex

Seems to hold in all the examples we tested so far

In the absence of a general argument/proof, we need to keep testing it,
searching for counter-examples (and learning what is special about them
if they exist...)

Experimental predictions/tests?



Thank You



A simple supersymmetric counter-exampleto gy, =1 :
Can consider single chiral superfield: W= gd3

In 3 dimensions flows to IR interacting fixed point, in 4 dimensions IR free

Global U(1)r symmetry with charges: Scalar q4 = %, fermion q,, = —%

Consider 4-dimensional free theory, then have
A2) =1, A(1) =§

Requires taking g, = 2, and then convexity seems natural (but not proven)

from BPS bound:
A(2n) > nA(2)



