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String theory provides a large number of different low-energy effective 
theories which have an ultraviolet completion to quantum gravity

In general, the different theories have different properties, like number of 
particles, gauge groups, etc..

But there are some (rare) features which, as far as we can tell, are 
common to all of them

The Swampland program is motivated by the existence of such apparently 
universal features, with an aim to understand if they are always required 
by any theory of quantum gravity

[Vafa ’05]



An old idea is that in quantum gravity there are no U(1) global symmetries

The simplest argument is that a black hole does not reflect any global 
symmetry charge on its horizon

Therefore, there are an infinite number of microstates associated to a 
black hole – in contradiction with the expected finite entropy



It is possible to rephrase this argument in terms of an infinite number of 
stable black hole remnants
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Figure 10: Figure illustrating how in the presence of a U(1) global symmetry, black hole
formation and decay would lead to an infinite number of stable remnant states below a fixed
mass scale.

its global charge. The result is therefore an object which is stable due to its global charge, but
which may be relatively light, so of order the Planck mass. This is a remnant. A quantum
theory of gravity with a global symmetry would therefore have an infinite number of remnants.
This is illustrated in figure 10.

So in the presence of a global symmetry black holes can turn one charged particle below
Mp into an infinite number of charged particles below Mp. Having an infinite number of states
below a fixed mass scale can be reasonably considered to be inconsistent [28]. However, it is not
simple to really prove that something goes wrong. An important point is that the remnants
may lie at energy scales where gravity is strongly coupled, say around Mp, and so a microscopic
derivation of inconsistencies is di�cult to reach. One may argue that the remnants can form a
violation of an appropriate entropy bound [22], but we will see in the following that this is not
simple to show for similar reasons.

This is actually a fundamental obstacle to the approach of attempting to derive Swampland
criteria from a semi-classical black hole starting point. The Swampland criteria are typically
formulated as statements about states in the theory which lie below the Planck mass, so things
that are particle-like in nature. On the other hand, black holes are extended solutions, and are
therefore only well understood for masses far above the Planck mass. In between these two
regimes lies the quantum gravity regime and any microscopic type argument would have to
cross this boundary. Typically, this is only possible to do in a controlled setting with su�cient
supersymmetry in a string theory. The notion of black hole entropy forms a bridge between
these two regimes allowing us to somewhat by-pass this issue, at least with an appropriate
microstates counting interpretation of the entropy, and so the entropy argument above is in this
sense stronger than the remnants argument. Nonetheless, there is a clear correlation between the
two infinities associated to global symmetries, and since in any case these arguments will form
indirect signposts towards the Swampland criteria, we may try to utilize the logic of problems
with remnants as a guiding principle.
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And we can rephrase it again in terms of an infinite number of stable 
bound states
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Gauging the U(1) modifies the story 

m
2𝑔𝑞 Gauge

Gravity

𝑚 ≥ 2 𝑔 𝑞 𝑀3

But we recover the same physics in the 𝑔 → 0 limit



The Weak Gravity Conjecture proposes that we still should not have the 
stable bound states / stable black holes (not clear that should be true)

[Arkani-Hamed, Motl, Nicolis, Vafa ’06 ]

If so, then we must have a charged particle with mass smaller than charge 

2 𝑔 𝑞 𝑀3 ≥ 𝑚



The logic naturally leads to the expectation that in the case of massless 
scalar fields we should demand the particle is self-repulsive under all forces
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[EP ’17]

So should formulate the WGC as



Argument receives support from string theory

[Lee, Lerche, Weigand ‘18]
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[…, Lee, Lerche, Weigand ’18,…]

No violation found to date (but difficult to test in non-supersymmetric settings)



In anti-de Sitter space (AdS), the separation of a particle from its copy is 
bounded by the radius 

It is more natural/accurate to formulate the conjecture as:

For example, consider 5-dimensional AdS with charged scalar 

the particle, while the energy of the bound state would be less than twice the mass of the

particle due to the binding energy. If that particle is the one with the largest charge-to-mass

ratio in the theory, then the bound state cannot decay to it or to any other state in the

theory.

If one is motivated by the absence of such stable bound states, then actually the most

direct and natural formulation of the WGC is as the Positive Binding Conjecture discussed

in the introduction.

In flat space we can apply this statement to a particle placed an infinite distance from

its copy. In that case, the binding energy positivity is mapped directly to the particle being

self-repulsive under the long-range Coulomb forces2, yielding the formulation (2.2). However,

global AdS space behaves e↵ectively like a box, so there is a limit as to how far the particle

can be displaced from its copy. In particular there is no obvious relation between the long-

range force and the binding energy. This makes the binding energy formulation of the WGC

somewhat di↵erent from both the statements about unstable Reissner-Nordstrom black holes

(2.1) and about repulsive long-range forces (2.2). In AdS space there is a contribution from

contact interactions to the binding energy, which cannot be dismissed.

Let us make this more precise for the case of 5-dimensional AdS space, following the

calculation in [9]. We consider a 5-dimensional gravitational theory with a U(1) gauge field

and a scalar field ' charged under it with charge q, that has an AdS5 solution:
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Here  is the 5-dimensional Planck scale. We measure every dimensionful quantity in units

of the AdS radius RAdS, and set this radius to unity RAdS = 1. The coe�cients a and

b are arbitrary constants. The action (2.3) captures all the relevant contributions to the

self-binding energy of ' (up to two-derivative order). Let us denote the self-binding energy

of ' as �'2 . This was calculated at leading order in perturbation theory in [9], which found

�'2 = �
photon
'2 + �

graviton
'2 + �

quartic
'2 , (2.4)

2
More precisely, this is true for four non-compact space-time dimensions. In higher dimensions it is

possible [3] that the long-distance force could be attractive but still there will not be any bound state.

4

are integer multiples of q0. The U(1) charge can always be normalized to be an integer (with

the minimal charge equal to one). As we will discuss below, the non-trivial statement here

is that q0 is not parameterically large in any parameter of the CFT. We propose that this is

an exact property of any CFT whose continuous global symmetry is precisely U(1).

There is a natural generalization of the proposal also to theories with larger symmetry

groups :

Convex Charge Conjecture: Consider any CFT with a continuous global symmetry

group G, and consider a simple factor G0 ⇢ G. Denote by � (r) the dimension of the lowest

dimension operator in the representation r of G. Then, there is always some representation

r0, which is non-trivial in G0 and has weights of order one, such that the dimensions �̃(q) ⌘

�(Symq(r0)) satisfy a convex-like constraint

�̃ (n1 + n2) � �̃ (n1) + �̃ (n2) , (1.2)

for any positive integers n1, n2.
1

Our proposal is motivated by, but is much more general than, the Weak Gravity Con-

jecture [1] (WGC) in Anti-de Sitter space. Indeed, we propose that the WGC should be

formulated (also in flat space) as a statement about the self-binding energy of a particle:

Positive Binding Conjecture: For a (weakly coupled) gravitational theory with a U(1)

gauge field, there should exist at least one charged particle in the theory, with charge of order

one, which has a non-negative self-binding energy.

By a self-binding energy here we mean the di↵erence of energies between the lowest two-

particle state and twice the energy of the one-particle state. This formulation is closely

related to previous formulations, most closely to self-repulsive statements [2, 3], but has

some important di↵erences which become more pronounced in anti-de Sitter (AdS) space.

Specifically, in AdS space the binding energy receives important contributions from contact

terms, and not only from long-range forces.

The organization of this paper is as follows. In section 2 we discuss the formulation of

the WGC in terms of binding energy, in flat space and in anti-de-Sitter space. In section 3

we introduce the CFT dual statements, in terms of convexity of the spectrum, and discuss

some related details. In section 4 we discuss how the conjecture fits in with what is known

generally about CFTs. Our discussion in these sections is mostly for the U(1) case, but

1
By Sym

q
(r0) we mean the symmetric product of q copies of the representation r0. In cases where this

symmetric product is reducible, we mean the specific representation whose highest weight is q times the

highest weight of r0.
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Binding energy is calculated (at tree level) as

the particle, while the energy of the bound state would be less than twice the mass of the

particle due to the binding energy. If that particle is the one with the largest charge-to-mass

ratio in the theory, then the bound state cannot decay to it or to any other state in the

theory.

If one is motivated by the absence of such stable bound states, then actually the most

direct and natural formulation of the WGC is as the Positive Binding Conjecture discussed

in the introduction.

In flat space we can apply this statement to a particle placed an infinite distance from

its copy. In that case, the binding energy positivity is mapped directly to the particle being

self-repulsive under the long-range Coulomb forces2, yielding the formulation (2.2). However,

global AdS space behaves e↵ectively like a box, so there is a limit as to how far the particle

can be displaced from its copy. In particular there is no obvious relation between the long-

range force and the binding energy. This makes the binding energy formulation of the WGC

somewhat di↵erent from both the statements about unstable Reissner-Nordstrom black holes

(2.1) and about repulsive long-range forces (2.2). In AdS space there is a contribution from

contact interactions to the binding energy, which cannot be dismissed.

Let us make this more precise for the case of 5-dimensional AdS space, following the

calculation in [9]. We consider a 5-dimensional gravitational theory with a U(1) gauge field
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S =
1

2

Z
d
5
x
p
�g

✓
1

2
R + 6�

1

4g2
F

2
µ⌫ + |Dµ'|

2

�m
2
|'|

2
� a |'|

4 + b |'|
2
|Dµ'|

2�
. (2.3)

Here  is the 5-dimensional Planck scale. We measure every dimensionful quantity in units

of the AdS radius RAdS, and set this radius to unity RAdS = 1. The coe�cients a and

b are arbitrary constants. The action (2.3) captures all the relevant contributions to the

self-binding energy of ' (up to two-derivative order). Let us denote the self-binding energy

of ' as �'2 . This was calculated at leading order in perturbation theory in [9], which found

�'2 = �
photon
'2 + �

graviton
'2 + �

quartic
'2 , (2.4)

2
More precisely, this is true for four non-compact space-time dimensions. In higher dimensions it is

possible [3] that the long-distance force could be attractive but still there will not be any bound state.
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[Fitzpatrick, Shih ‘11]

Fig. 2: Witten Diagrams for the quartic contact interaction (left) and photon,

graviton exchange (middle, right).

4.2. AdS/CFT calculation of four-point functions

The O(κ2) correction to the four-point function is calculated using the standard tech-

niques of AdS/CFT. For the model (2.2), the relevant Witten diagrams are shown in fig.

2. We see that there are three types of contributions to the four-point function in general

– those from scalar quartic interactions, photon exchange, and graviton exchange. We will

separate out these contributions and write

CO1O2(x1, x2, x3, x4) = C(quartic)
O1O2

(x1, x2, x3, x4)+C(photon)
O1O2

(x1, x2, x3, x4)+C(graviton)
O1O2

(x1, x2, x3, x4)

(4.10)

Witten diagram calculations are generally more tractable in Euclidean AdS Poincaré

patch coordinates

ds2 =
d"w2 + (dw0)2

(w0)2
. (4.11)

In what follows, we will need the formula for the bulk-to-boundary propagator:

K∆(w, "x) = N∆

(

w0

(w0)2 + ("w − "x)2

)∆

. (4.12)

The normalization factor is fixed by imposing the canonically normalized two-point func-

tion in the CFT; it is exactly equal to the normalization of the ground-state single-particle

wavefunction ψ0(x) derived in section 3.6 Note that for indices, we will be following the

6 For 1 < ∆ < 2, there are two available branches ∆+,∆− of the mass-dimension relationm2 =

∆(∆ − 4), and one must modify the AdS/CFT prescription for obtaining correlation functions.

There are several equivalent procedures: the earliest method was to use (4.12) and Legendre
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Here we have introduced � (the dimension of the CFT operator dual to ') and N� as

m
2 = � (�� 4) , N� =

r
�� 1

2⇡2
. (2.6)

The Positive Binding Conjecture implies that in all UV-complete theories �'2 � 0, and

there are no counter-examples to this as far as we know. In the case where the action (2.3) is

completed into a supersymmetric one, and ' is taken as a BPS state, we have the relations

SUSY : �g
2
q
2 = a+ b� (2��) = �

2

3
�2

. (2.7)

This leads to the exact relation �'2 = 0. It also manifests explicitly that the contact

contribution to the binding energy becomes negligible relative to the other contributions in

the � ! 1 limit, where the particle is very heavy compared to the AdS scale.

Note that the action (2.3) is not the most general low-energy e↵ective action, in that it

does not include the contribution from additional massless scalar fields. But the main point

is that in AdS the contact interactions are important, and so the binding energy formulation

of the WGC is significantly di↵erent from the one based on black holes or long-range forces.

It is also the one which is precisely saturated with supersymmetry, and so it seems like the

more natural one.

3 A Convex Dimension Conjecture

The AdS/CFT correspondence [10–12] maps gravitational theories on (d + 1)-dimensional

AdS space to d-dimensional CFTs. This correspondence maps the energy of a state in global

AdS space to the dimension of the corresponding local operator (related to the state by

the state/operator correspondence) in the CFT, and it maps gauge fields in the bulk to
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does not include the contribution from additional massless scalar fields. But the main point

is that in AdS the contact interactions are important, and so the binding energy formulation

of the WGC is significantly di↵erent from the one based on black holes or long-range forces.

It is also the one which is precisely saturated with supersymmetry, and so it seems like the

more natural one.

3 A Convex Dimension Conjecture

The AdS/CFT correspondence [10–12] maps gravitational theories on (d + 1)-dimensional

AdS space to d-dimensional CFTs. This correspondence maps the energy of a state in global

AdS space to the dimension of the corresponding local operator (related to the state by

the state/operator correspondence) in the CFT, and it maps gauge fields in the bulk to

5

with:

Positive Binding Conjecture demands: 𝛾4! ≥ 0



The binding energy is dual to the anomalous dimension of the operator 𝜙5

𝛾4! = Δ 𝜙5 − 2Δ(𝜙)

Where 𝜙5 is the leading operator in the Operator Product Expansion of 𝜙×𝜙

So, if we write the dimension of operators as a function of charge 𝑞 we have 
the conjecture:

Δ 2𝑞 − 2Δ 𝑞 ≥ 0



We can then formulate this more generally as: 
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1 Introduction

In this note we consider properties of local operators in unitary Conformal Field Theories

(CFTs) with continuous global symmetries (in d � 2 space-time dimensions). We propose

that such operators should satisfy a certain convexity-like property:

Abelian Convex Charge Conjecture: Consider any CFT with a U(1) global symme-

try. Denote by � (q) the dimension of the lowest dimension operator of charge q. Then this

must satisfy a convex-like constraint

� (n1q0 + n2q0) � � (n1q0) +� (n2q0) , (1.1)

for any positive integers n1, n2, for some q0 of order one.

Equivalently, the conjecture states that the operator product expansion (OPE) of the

lowest-dimension operators with positive charges has no singular terms, whenever the charges

1



What is 𝑞6? From the bound-states intuition we expect it to be the charge 
of the operator with the smallest dimension-to-charge ratio in the theory

It is clear that if we define it that way, the conjecture follows almost trivially:

Δ(𝑛 𝑞6)
𝑛 𝑞6

>
Δ(𝑞6)
𝑞6

So, the non-trivial statement is: 𝒒𝟎 is of order one

This is capturing the WGC: if the operator could form ‘bound states’ then the 
minimum dimension-to-charge ratio would occur at large q



Now we make a ‘wild leap’:

Since the formulation seems unrelated to the existence of a weakly-curved 
gravity dual, we propose that the conjecture holds for any CFT

For example, the formulation has no problem handling a gravity dual with an 
infinite number of massless higher spin fields (it makes no reference to 
gravitons or gauge fields) 



Before testing the conjecture, we formulate a more general version:

are integer multiples of q0. The U(1) charge can always be normalized to be an integer (with

the minimal charge equal to one). As we will discuss below, the non-trivial statement here

is that q0 is not parameterically large in any parameter of the CFT. We propose that this is

an exact property of any CFT whose continuous global symmetry is precisely U(1).

There is a natural generalization of the proposal also to theories with larger symmetry

groups :

Convex Charge Conjecture: Consider any CFT with a continuous global symmetry

group G, and consider a simple factor G0 ⇢ G. Denote by � (r) the dimension of the lowest
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1

Our proposal is motivated by, but is much more general than, the Weak Gravity Con-

jecture [1] (WGC) in Anti-de Sitter space. Indeed, we propose that the WGC should be

formulated (also in flat space) as a statement about the self-binding energy of a particle:

Positive Binding Conjecture: For a (weakly coupled) gravitational theory with a U(1)

gauge field, there should exist at least one charged particle in the theory, with charge of order

one, which has a non-negative self-binding energy.

By a self-binding energy here we mean the di↵erence of energies between the lowest two-

particle state and twice the energy of the one-particle state. This formulation is closely

related to previous formulations, most closely to self-repulsive statements [2, 3], but has

some important di↵erences which become more pronounced in anti-de Sitter (AdS) space.

Specifically, in AdS space the binding energy receives important contributions from contact

terms, and not only from long-range forces.

The organization of this paper is as follows. In section 2 we discuss the formulation of

the WGC in terms of binding energy, in flat space and in anti-de-Sitter space. In section 3

we introduce the CFT dual statements, in terms of convexity of the spectrum, and discuss

some related details. In section 4 we discuss how the conjecture fits in with what is known

generally about CFTs. Our discussion in these sections is mostly for the U(1) case, but

1
By Sym

q
(r0) we mean the symmetric product of q copies of the representation r0. In cases where this

symmetric product is reducible, we mean the specific representation whose highest weight is q times the

highest weight of r0.
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Tests of the Conjecture



At large charge the spectrum is convex:

Δ 𝑞 ∼ 𝐴 𝑞
8

89:

[Hellerman, Orlando, Reffert, Watanabe ‘15] 
[Monin, Pirtskhalava, Rattazi, Seibold ‘16] 
[Alvarez-Gaume, Loukas, Orlando, Reffert ‘16]

For BPS states in supersymmetric theories, or for free scalar theories, the 
spectrum is marginally convex:

Δ 𝑞 ∼ 𝐴 𝑞

In 2-dimensional CFTs a U(1) symmetry implies 2 symmetries, each one of 
which can be gauged to yield a coset CFT, with spectrum

Δ 𝑞 ∼ Δ;<=
> :

+ 𝑎 𝑞5



For free fermionic theories, the spectrum is not even marginally convex if 
we take 𝑞6 equal to the number of components of the fermion

For example, in 3 dimensions we have the spectrum:

This is because Pauli’s exclusion principle requires derivatives to be 
inserted in operators with multiple fermions

Δ 1 = 1
Δ 2 = 2
Δ 3 = 4

Δ 4 = 6
Δ 5 = 8
Δ 6 = 10 [Komargodski, Mezei, Pal, Raviv-Moshe ‘21]

Therefore, any small perturbative interaction will maintain convexity

Way out: Large number of fermions



Testing in explicit theories requires some expansion parameter which 
leads to some sense of weak-coupling. 

We can then identify specific fields associated to the operators, and 
measure convexity by

global symmetries of the CFT.3 Thus, it is natural to try to map the WGC in AdS space

to a statement about CFTs, which should hold at least for CFTs with weakly coupled and

weakly curved gravitational duals, and, as we propose, also more generally.

The holographic dual of the WGC in AdS was first explored in [13], where it was formu-

lated as a statement on the ratio of the dimension to the charge of an operator in the CFT

(for 4-dimensional CFTs)
�2

q2


9

40

CT

CV
. (3.1)

Here � is the dimension of the operator, q its charge, and CT and CV are the coe�cients of

the two-point functions of the energy-momentum tensor and the global symmetry current,

respectively (schematically, these measure the number of degrees of freedom in the CFT, with

CT counting all of them and CV only the ones charged under the global U(1)). Subsequently,

the holographic dual of the Weak Gravity Conjecture was further developed in [14–22].

In [23, 24] the holographic dual of the distance conjecture was developed.

In this paper we discussed a di↵erent formulation of the WGC in terms of binding energy,

and this has a simpler formulation in the dual CFT, as the Convex Charge Conjecture (1.1)

that we presented in the introduction.4 While the motivation for the conjecture comes from

CFTs with weakly coupled and weakly curved gravitational duals, we will boldly conjecture

that it holds for all CFTs, and perform various tests of this conjecture below5.

In the case of weakly-coupled theories, we can formulate the conjecture in terms of specific

operators related to the fields appearing in the action. For example, consider a primary scalar

operator � charged under a global symmetry, with charge of order one. Denote by �
n the first

(lowest dimension) primary operator appearing in the (symmetrised) OPE of n �’s. Then,

the dimension of �n should satisfy (1.1) (or its generalization (1.2)). We can introduce a

more condensed notation as

�n1,n2 ⌘ �
�
�
n1+n2

�
�

⇣
� (�n1) +� (�n2)

⌘
, (3.2)

and then write (1.1) or (1.2) as

�n1,n2 � 0 . (3.3)

3
The last statement depends on the boundary conditions, but it is always true for d � 3. In any case the

inverse statement is always true; a continuous global symmetry in the CFT is related to a gauge field in the

bulk.
4
Note that (1.1) is not quite equivalent to convexity of the function � (q). More precisely, (1.1) follows if
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The simplest explicit theory to test it in is Wilson-Fisher U(1) in 4 − 𝜖 dimensions

are fermions, the spectrum is convex (growing faster than linearly) already in the free theory,

so we do not have non-trivial tests of our conjecture in such cases (except when the number

of fermion fields is very large, as in large N gauge theories, such that the faster-than-linear

growth of the free fermion theory sets in only at large charges).

5.1 The U(1) model in 4� ✏ dimensions

The simplest tests of the conjecture, which we will start from, can be performed in gen-

eralizations of the Wilson-Fisher fixed point, which can be analyzed perturbatively in an

expansion in small ✏, where d = d0 � ✏ for some integer d0. We will show that in all the

examples which are believed to correspond to unitary CFTs when ✏ = 1, our conjecture

holds. However, we should note that strictly speaking the theories with small ✏ are not uni-

tary CFTs by themselves [37], and the extrapolation to ✏ = 1 is not under control. So these

examples do not provide rigorous tests of the conjecture, but it seems that if we ignore the

non-unitarity at non-integer dimensions (which is related to specific operators which vanish

as ✏ ! 0), the conjecture does non-trivially hold in all of these cases.

The simplest non-trivial CFT of this type that we can consider is the U(1) = O(2) model

at the Wilson-Fisher fixed point [38]. We follow here the analysis of the anomalous dimension

in [39]. The Euclidean action is given by
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In d = 4� ✏ dimensions there is a Wilson-Fisher fixed point (when the mass is fine-tuned to

zero) at a coupling
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This gives
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3
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, (5.4)

which satisfies (3.3) at leading order in ✏.8

8
Note that the expression (5.3) is derived assuming a small expansion parameter ✏n ⌧ 1, and then the

first term in (5.4) always dominates. For large ✏n the theory goes over to the large charge regime discussed

in the previous section, which is convex. The spectrum remains convex [40] throughout the continuous
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𝑂 𝑁 (quartic) model in 4 − 𝜖 dimensions: 

5.2 The quartic O(N) model in 4� ✏ dimensions

More generally, we can consider the O(N) model. Here we will follow the analysis of [43,44].

The Euclidean Lagrangian is

L =
1

2
@
µ
�i@µ�i +

�

4!
(�i�i)

2
, (5.5)

with i = 1, · · · , N . In d = 4� ✏ dimensions the fixed point is at
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The global group here is non-Abelian, so we need to use the general conjecture (1.2); in par-

ticular � itself is in the fundamental representation of O(N), and we can test the conjecture

where r0 is taken to be this representation.

In particular, we can consider the operators 'n, where ' ⌘ �1 + i�2; these lie in the n’th

symmetric product of the fundamental representation of O(N). Their dimension is given

by [44]
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We therefore have
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+6n1N + 6n2N � 16N +N
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⌘
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�
,

and so (3.3) is satisfied at leading order in ✏.

5.3 The sextic U(1) and O(N) models in 3� ✏ dimensions

For the sextic U(1) model in d = 3 � ✏ (where both the |�|
2 and the |�|

4 operators are

fine-tuned to zero), we will follow the analysis of [45, 46]. The Euclidean Lagrangian is

L = @
µ
�@µ�̄+

✓
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��̄

�3
. (5.9)

interpolation between these two regimes [39] (see also [41, 42]).
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𝑈 1 and 𝑂 𝑁 (sextic) model in 3 − 𝜖 dimensions: 
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In this case the leading order perturbative correction takes a more complicated form, related

to the fact that it arises at two-loop order. In particular we see that for n1, n2 > 1 we have a

positive anomalous dimension at leading order, which is the 2-loop level. But for n1 = n2 = 1,

the two-loop contribution vanishes, and we have to look at the 4-loop contribution. Using

(5.11) to compute �(2), we find

�1,1 = 2

✓
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8⇡

◆4

+O(�6
?) , (5.13)

consistent with (3.3).

The O(N) sextic model in 3 � ✏ dimensions was also analysed in [46]. We can consider

the dimension of an operator of total charge n (as in section 5.2), with r0 the fundamental

representation of O(N). 9 They found

�n1,n2 =

✓
�?

8⇡

◆2
n1n2 (n1 + n2 � 2)

3
(5.14)

�

✓
�?

8⇡

◆4
n1n2

72

h
8
�
�182 + 123n1 � 32n2

1 + 5n3
1

+123n2 � 48n1n2 + 10n2
1n2 � 32n2

2 + 10n1n
2
2 + 5n3

2

�

+(16 +N)
�
11� 9n1 + 2n2

1 � 9n2 + 3n1n2 + 2n2
2

�
⇡
2
i
+O(�6

?) .

This is consistent with (3.3) for all values of n1 and n2 (including n1 = n2 = 1).

9
In [46] certain contributions to the dimension of �n

at four loops were not included, specifically self-

energy insertions to the n external legs of the �n
vertex. However, since this contribution scales as n, it does
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Can also analyse theories using large 𝑁 expansion

𝑂 𝑁 (quartic) model in 3 dimensions: 

above, the anomalous dimension of �n would be proportional to ✏n(n�1) (as in the previous

sections where we had one-loop anomalous dimensions), and we know from the n = 2 case

that the coe�cient is positive. Thus, our conjecture holds for these theories, but only when

we take q0 = 2.

5.5 The quartic O(N) model in d dimensions at large N

There is an alternative way to compute the anomalous dimensions in the quartic O(N)

model of section 5.2, by performing a 1/N expansion for general dimension d, instead of an

✏ expansion. The two expansions agree in their overlap. The advantage of this expansion

is that it can be used also for the physical case of d = 3, and thus it gives us a real test of

the conjecture (in the large N limit, for r0 the fundamental representation of O(N)). In this

case we should consider a general operator of charge q, with dimension � (q). Expanding in
q
N for d = 3 one obtains [47, 48]
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. (5.16)

This gives �n1,n2 > 0, consistent with the conjecture.

It is possible to formally calculate the dimension also in d = 5 (where the non-trivial

fixed point is a UV fixed point rather than an IR fixed point), and this gives [48]
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This leads to �n1,n2 < 0, violating the conjecture. Similarly, one can calculate in 6 � ✏

dimensions for �|�|
2 theories (which are believed to flow to IR fixed points related to the

UV fixed points mentioned above) in the ✏ expansion, and this gives [49, 50]

�n1,n2 = �264✏
n1n2

N2
+O

✓⇣
✏n

N

⌘2
◆

, (5.18)

which is again in contradiction with the conjecture.

However, in d > 4 (and in particular in d = 5) it is believed that the CFTs appearing

in the computations above are non-unitary, related to the non-boundedness of the scalar

potential when we flow to these fixed points from well-defined UV theories (see, for example,

[48,49,51]). Thus, the examples of the previous paragraph do not contradict our conjecture,

which is only for unitary theories. It is intriguing that if our conjecture is correct, the
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However, in d > 4 (and in particular in d = 5) it is believed that the CFTs appearing

in the computations above are non-unitary, related to the non-boundedness of the scalar

potential when we flow to these fixed points from well-defined UV theories (see, for example,

[48,49,51]). Thus, the examples of the previous paragraph do not contradict our conjecture,

which is only for unitary theories. It is intriguing that if our conjecture is correct, the
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above, the anomalous dimension of �n would be proportional to ✏n(n�1) (as in the previous

sections where we had one-loop anomalous dimensions), and we know from the n = 2 case

that the coe�cient is positive. Thus, our conjecture holds for these theories, but only when

we take q0 = 2.

5.5 The quartic O(N) model in d dimensions at large N

There is an alternative way to compute the anomalous dimensions in the quartic O(N)

model of section 5.2, by performing a 1/N expansion for general dimension d, instead of an

✏ expansion. The two expansions agree in their overlap. The advantage of this expansion

is that it can be used also for the physical case of d = 3, and thus it gives us a real test of

the conjecture (in the large N limit, for r0 the fundamental representation of O(N)). In this

case we should consider a general operator of charge q, with dimension � (q). Expanding in
q
N for d = 3 one obtains [47, 48]

� (q) = N


q

2N
+

4

⇡2

⇣
q

N

⌘2

+O

✓⇣
q

N

⌘3
◆�

. (5.16)

This gives �n1,n2 > 0, consistent with the conjecture.

It is possible to formally calculate the dimension also in d = 5 (where the non-trivial

fixed point is a UV fixed point rather than an IR fixed point), and this gives [48]

� (q) = N


3q

2N
�

32
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⇣
q

N

⌘2

+O

✓⇣
q

N

⌘3
◆�
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This leads to �n1,n2 < 0, violating the conjecture. Similarly, one can calculate in 6 � ✏

dimensions for �|�|
2 theories (which are believed to flow to IR fixed points related to the

UV fixed points mentioned above) in the ✏ expansion, and this gives [49, 50]

�n1,n2 = �264✏
n1n2

N2
+O

✓⇣
✏n

N

⌘2
◆

, (5.18)

which is again in contradiction with the conjecture.

However, in d > 4 (and in particular in d = 5) it is believed that the CFTs appearing

in the computations above are non-unitary, related to the non-boundedness of the scalar

potential when we flow to these fixed points from well-defined UV theories (see, for example,

[48,49,51]). Thus, the examples of the previous paragraph do not contradict our conjecture,

which is only for unitary theories. It is intriguing that if our conjecture is correct, the
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Gauge theories, with perturbative approach:

4-dimensional 𝑆𝑈(𝑁?) gauge theory with 𝑁@ massless fermions and 𝑁A
massless scalars has a perturbative (Banks-Zaks type) fixed point at large 𝑁

q CPNf tri-critical

1 0.125 0.097
2 0.311 0.226
3 0.544 0.384
4 0.816 0.567
5 1.121 0.771

Table 2: Table showing the coe�cient of the leading term in the 1/Nf expansion, namely
the large Nf limit of �(q)/Nf , for the dimension of the first few monopoles, for the CPNf

model [54] and the tri-critical model [62].

scalars in the fundamental of SU(Nc).11

When we have scalars, we must also consider �4 couplings that are generated by the

renormalization group flow, and we need to consider fixed points for these couplings in

addition to the gauge coupling. This question was analyzed in [66] (see also [67]), where

they took Ns scalars and a scalar potential of the form

V (�) = h̃Tr(�†
��

†
�) + f̃(Tr(�†

�))2, (5.20)

where � is viewed as an Nc⇥Ns matrix. They found that for small enough values of Ns/Nc,

there are perturbative fixed points which are unitary, with real values for the couplings h̃

and f̃ and a positive-definite scalar potential. They found 4 fixed points of this type, with

varying numbers of relevant operators; our analysis below will apply to all of these fixed

points. Since Ns/Nc needs to be small, perturbative fixed points of this type require having

both fermions and scalars, where the fermions make up most of the contribution to the beta

function.

In the case of Nf fermions the global symmetry is SU (Nf )L ⇥ SU (Nf )R ⇥ U(1)B. We

can consider meson operators which are in the bi-fundamental representation of SU(Nf )L ⇥

SU(Nf )R and neutral under U(1)B and their symmetric products, so operators of the form

O
 
n =

�
 ̄ 

�n
, (5.21)

where we can take all the  ’s and all the  ̄’s to have the same flavor index (these operators

vanish for n > 2Nc, requiring adding derivatives to obtain higher-charge operators, but in

the large Nc limit this is not relevant for our considerations). In the case of Ns scalars the

11
In the case of scalars the mass needs to be fine-tuned to zero at each order in perturbation theory.
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This needs to coincide with the fixed point of the quartic scalar terms

global symmetry is SU (Ns)⇥ U(1)B. We can consider again meson operators, of type

O
�
n = (�⇤

�)n , (5.22)

where now we choose them to transform in symmetric products of the adjoint representation

of SU(Ns). In particular we can choose, for instance, all �’s to have index 1 and all �⇤’s to

have index 2, and we will implicitly assume this below.

Consider first the scalar case. We are interested in calculating the di↵erence in dimension

between the one-meson and two-meson operators

�
�
1,1 = �

⇣
O

�
2

⌘
� 2�

⇣
O

�
1

⌘
. (5.23)

At leading order in perturbation theory this is su�cient to determine convexity of the spec-

trum.

There are two types of one-loop contributions to the scalar-meson anomalous dimensions.

One contribution comes from gluon exchanges, and it turns out that this contribution exactly

vanishes when we consider the combination (5.23). The reason for this cancellation between

the 1-meson and 2-meson anomalous dimensions can be simply understood as follows. To

calculate the 2-meson anomalous dimension we consider the correlator12

⌦
�
⇤
j1 (�p1)�i1 (q1)�

⇤
j2 (�p2)�i2 (q2) (�

⇤
l1�k1�

⇤
l2�k2) (k)

↵
�
l1k1�

l2k2 , (5.24)

where the first 4 fields have opposite flavor indices from the ones appearing in the 2-meson

operator (the indices written explicitly in (5.24) are the color indices). At 1-loop this receives

contributions from 4 types of gluon-exchange diagrams. First, there are diagrams where a

gluon connects a specific external leg to itself. These are wavefunction regularizations, that

cancel when computing di↵erences such as (5.23). Next, there are those diagrams where the

gluon is exchanged between scalars in the same meson, so say between �
⇤
l1 and �k1 . Those will

also cancel with the 1-meson contributions when we take the di↵erence in dimensions (5.23).

The other two types of diagrams are where the gluon is exchanged between the mesons, so

say between �
⇤
l1 and �

⇤
l2 . In one set of diagrams the gluon is exchanged between two �’s (or

two �
⇤’s), and in the other it is exchanged between a � and a �

⇤. The two possibilities are

shown in figure 1.

When computing the 2-meson diagrams in figure 1, it is easy to see that there is a sign

12
This correlator is not gauge-invariant, but we can consider it in a specific gauge if we want, and this

issue is not important at the leading order we discuss here.
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Scalar mesons are charged under 𝑆𝑈 𝑁A global symmetry

Find (at 1-loop): 𝛾:,:
4 = Δ 𝒪5

4 − 2Δ 𝒪:
4 = 𝐴(Eℎ + G𝑓) 𝐴 > 0

At fixed points have Eℎ + G𝑓 > 0, so spectrum is convex ✓



Gauge theories with semi-classical methods:

3-dimensional 𝑈(𝑁?) gauge theory with 𝑁@ fermions flows to CFT in the IR

Has global symmetry 𝑈 1 )"C with monopole operators charged under it 

At large 𝑁@ the dimensions of these can be computed as

q �q

1 0.265Nf � 0.0383 +O(1/Nf )
2 0.673Nf � 0.194 +O(1/Nf )
3 1.186Nf � 0.422 +O(1/Nf )
4 1.786Nf � 0.706 +O(1/Nf )
5 2.462Nf � 1.04 +O(1/Nf )

Table 1: The first few monopole operator dimensions �q for monopole charges q in the U(Nc)
gauge theory in 3 dimensions with Nf fermions in the fundamental, taken from [54].

Note that for these monopole operators, as well as for the ones mentioned in the next

two subsections and in [56–58], the large q expansion works quite well all the way down to

q = 1 (this was first observed in the context of the ✏ expansion of their dimensions in [59]).

The convexity of the spectrum naturally follows from this behavior. However, note that

this statement about the validity of the large q expansion is not true for the other examples

we discuss in this paper. Presumably it is related to the fact that the dimensions of the

lowest-charge monopole operators are parameterically large (of order Nf ) in the limit where

we can compute them, while the other low-charge operators we discuss have dimensions

of order one, and to the fact that the gap to the massive states in the e↵ective theory of

the Nambu-Goldstone bosons (expanded around the monopole states) is not small even for

q = 1.

5.7 U(Nc) Chern-Simons theories in 3 dimensions with fermions

The theories above can be easily generalized by adding a Chern-Simons level k, as long as

k�Nf/2 2 Z. Let us start from the case of Nc = 1. Chern-Simons theories with gauge group

U(1) in 3-dimensions and Chern-Simons level k, with Nf charged fermion fields, flow to an

interacting CFT in the IR for large Nf and/or large k. The theories have a U(1)top with

monopoles charged under it. The spectrum of such monopoles was studied in [55], which we

follow. The simplest monopole operators in this case sit in some SU(Nf ) representations that

were analyzed there, and we can take r0 to be any one of these representations (since they

are all degenerate at large Nf ). Note that for k = Nf/2 the simplest monopole operators

are singlets of SU(Nf ), so the representation r0 is trivial in SU(Nf ).

There is a simple expression for the dimension �q for large  � 1, where  = k
Nf

(but
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Can do similar computations for large 𝑁@ scalars (with or without quartic 
terms), and also for fermions with quartic couplings (Gross-Neveu type)

q CPNf tri-critical

1 0.125 0.097
2 0.311 0.226
3 0.544 0.384
4 0.816 0.567
5 1.121 0.771

Table 2: Table showing the coe�cient of the leading term in the 1/Nf expansion, namely
the large Nf limit of �(q)/Nf , for the dimension of the first few monopoles, for the CPNf

model [54] and the tri-critical model [62].

scalars in the fundamental of SU(Nc).11

When we have scalars, we must also consider �4 couplings that are generated by the

renormalization group flow, and we need to consider fixed points for these couplings in

addition to the gauge coupling. This question was analyzed in [66] (see also [67]), where

they took Ns scalars and a scalar potential of the form

V (�) = h̃Tr(�†
��

†
�) + f̃(Tr(�†

�))2, (5.20)

where � is viewed as an Nc⇥Ns matrix. They found that for small enough values of Ns/Nc,

there are perturbative fixed points which are unitary, with real values for the couplings h̃

and f̃ and a positive-definite scalar potential. They found 4 fixed points of this type, with

varying numbers of relevant operators; our analysis below will apply to all of these fixed

points. Since Ns/Nc needs to be small, perturbative fixed points of this type require having

both fermions and scalars, where the fermions make up most of the contribution to the beta

function.

In the case of Nf fermions the global symmetry is SU (Nf )L ⇥ SU (Nf )R ⇥ U(1)B. We

can consider meson operators which are in the bi-fundamental representation of SU(Nf )L ⇥

SU(Nf )R and neutral under U(1)B and their symmetric products, so operators of the form

O
 
n =

�
 ̄ 

�n
, (5.21)

where we can take all the  ’s and all the  ̄’s to have the same flavor index (these operators

vanish for n > 2Nc, requiring adding derivatives to obtain higher-charge operators, but in

the large Nc limit this is not relevant for our considerations). In the case of Ns scalars the

11
In the case of scalars the mass needs to be fine-tuned to zero at each order in perturbation theory.
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✓ ✓

Can also add Chern-Simons term with level 𝑘, and find that monopole 
spectrum becomes more convex monotonically with increasing 𝑘
[Chester, Iliesiu, Mezei, Pufo ’17] [Chester ‘21] [Chester – Private Communication]

✓



A simple supersymmetric counter-example to 𝑞6 = 1 ∶

Can consider single chiral superfield:  𝑊 = 𝑔ΦD

In 3 dimensions flows to IR interacting fixed point (in 4 dimensions IR free):

Global 𝑈 1 E symmetry with charges and dimensions:

Requires taking 𝑞6 = 2, and then convexity seems natural (but not proven) 
from BPS bound: 

Δ 2𝑛 > 𝑛 Δ(2)

Scalar: 𝑞4 =
5
D

, Δ 2 = 5
D Fermion: 𝑞F =

:
D

, Δ 1 = G
H



3

Q ✏
5

�
6 MC bootstrap

1 0.518(1) - 0.5190(1) 0.5190(1)
2 1.234(3) 1.23(2) 1.236(1) 1.236(3)
3 2.10(1) 2.10(1) 2.108(2) -
4 3.114(4) 3.103(8) 3.108(6) -

TABLE I. Conformal dimensions D(Q) obtained previously
by other methods for Q  4: Field theory results in 4 � ✏

dimensions at five loops are in column two, six loop results at
d = 3 are in column three ([32] for Q = 2, in [33] for Q = 3
and in [34] for Q = 4), previous MC results are in column
four [35], and bootstrap results are in column five [36].
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FIG. 2. The figures (top and bottom) show the quantity
R(L/2) for di↵erent lattice sizes L/a = 8, . . . , 120 and di↵erent
Q values. The straight line on a log-log plot is indicative of
the power law behavior, and the slope gives the di↵erence of
the conformal dimensions 2�(Q). Note that there is no visible
signal-to-noise problem in these correlators.

With the Wol↵ cluster algorithm it is di�cult to aver-
age numbers of order one to compute a small value of
CQ(r) at large separations. In contrast, in the worm
algorithm, it is di�cult to correctly build the worldline
configurations that contribute to the correlation function
in the presence of charged sources Q and �Q separated
by a large distance. In this case the severe signal-to-noise
ratio problem emerges as an overlap problem between
the vacuum ensemble and the one containing the sources.

In order to overcome this problem we have designed an
algorithm to e�ciently compute the ratio

R(L/2) =
CQ(r = L/2)

CQ�1(r = L/2)
(7)

on cubic lattices of side L for 8  L/a  120 at the
critical point �c (the details of our algorithm can be
found in the supplementary material). Using R(L/2) it is
easy to extract the di↵erence �(Q) = D(Q)�D(Q� 1)
using the relation R(L) ⇠ 1/L2�(Q). The accuracy with
which we are able to compute the ratio R(L/2) for various
values of Q can be seen in Fig. 2. Once the di↵erences
�(Q) are known, we can also extract D(Q) by setting
D(Q = 0) = 0. Our estimates of both �(Q) and D(Q)
using Monte Carlo calculations, are given in Table II. It
is easy to verify that our results match quite well with
previous results in Table I when Q < 4.

Q �(Q) D(Q) Q �(Q) D(Q)
1 0.516(3) 0.516(3) 7 1.332(5) 6.841(8)
2 0.722(4) 1.238(5) 8 1.437(4) 8.278(9)
3 0.878(4) 2.116(6) 9 1.518(2) 9.796(9)
4 1.012(2) 3.128(6) 10 1.603(2) 11.399(10)
5 1.137(2) 4.265(6) 11 1.678(5) 13.077(11)
6 1.243(3) 5.509(7) 12 1.748(5) 14.825(12)

TABLE II. Results for the conformal dimensions �(Q) and
D(Q) defined through (6). Fit systematics are discussed in
the Supplementary Material. While our results for Q < 4 are
in good agreement with previous results as seen in Table I,
there is a slight deviation for Q = 4.

We can now verify if the conformal dimensions in Ta-
ble II are consistent with Eq. (1). For this purpose we
perform a combined fit of our data for the di↵erence �(Q)
and D(Q) assuming that c 3

2
, c 1

2
, c� 1

2
are non-zero and

c0 = �0.094 as expected. Taking into account various
systematic errors from fitting procedures we estimate
c 3

2
= 1.195(10), c 1

2
= 0.075(10) and c� 1

2
= 0.0002(5).

The raw data for �(Q) are shown in Fig. 3, and further
technical details are discussed in the Supplementary Ma-
terial. We also show a comparison with the prediction
obtained by just keeping the first three leading terms
of the expansion in Eq. (1). As the figure shows, this
prediction works even at small values of Q but is o↵ only
by a few percent at Q = 1.

Next we explore if we can connect our above calculations
of c 3

2
and c 1

2
with the ones appearing in Eq. ((3)) for the

expansion of the energy on a torus. Lattice calculations
naturally lead to a torus geometry in the continuum
limit if we keep the physical length L fixed while taking
the number of lattice points in each direction, L/a, to
infinity. The lattice spacing a itself is defined by setting
the lattice energy EL(Q) to be equal to the continuum
energy ET 2(Q) on the torus of side L as the continuum
limit is taken. On the lattice we measure the energy in
terms of the dimensionless number EL(Q)at as a function

Can test in completely strongly-coupled theories: O(2) model in 3D

Table from: [Banerjee, Chandrasekharan, Orlando ‘18]

Theory describing the 
superfluid transition in I𝐻𝑒

[Chester et al. ‘20]

1) 𝑞6 is charge of lightest charged operator
2) 𝑞6 is smallest scalar operator charge

Have proposed counter examples on gravity side 
in flat space for supersymmetric theories with 
multiple U(1)s: [Heidenreich, Reece, Rudelius ‘16]

All our examples are consistent with strong versions of conjecture:

CFT data method value ref

�s EXP 1.50946(22) [85]
MC 1.51122(15) [86]
CB 1.51136(22)

�� MC 0.519050(40) [86]
CB 0.519088(22)

�t MC 1.2361(11) [87]
CB 1.23629(11)

���s CB 0.687126(27⇤)
�sss CB 0.830914(32⇤)
�tts CB 1.25213(14⇤)
���t CB 1.213408(65⇤)

CJ/C
free

J CB 0.904395(28⇤)
CT/C

free

T CB 0.944056(15⇤)

Table 1: Comparison of conformal bootstrap (CB) results with previous determinations from
Monte Carlo (MC) or experiment (EXP). We denote the leading charge 0, 1, and 2 scalars by
s,�, t, respectively. Bold uncertainties correspond to rigorous intervals from bootstrap bounds.
Uncertainties marked with a ⇤ indicate that the value is estimated non-rigorously by sampling
points, see sections 4.2 and 4.3.

We apply our methods to study correlation functions of the lowest-dimension charge-0,
charge-1, and charge-2 scalars in the three-dimensional critical O(2) model. The 3d O(2)
model is one of the most studied renormalization group (RG) fixed points, both theoretically
and experimentally. It describes phase transitions in numerous physical systems, including
ferromagnets and antiferromagnets with easy-plane anisotropy, from which it also inherits
the name of theXY universality class. Unfortunately, experimental results and Monte Carlo
results for the critical exponents of the O(2) model have been in 8� tension for two decades.
We have computed the critical exponents to high precision (with rigorous error bars). We
find excellent agreement with Monte Carlo results, and a clear discrepancy with experiment.
In addition, we compute numerous other scaling dimensions and OPE coe�cients in theO(2)
model. Our results, together with comparisons to other methods, are summarized in table 1.

1.2 Experimental and theoretical approaches to the 3d O(2) model

In the remainder of this introduction, we provide an account of past approaches to the 3d
O(2) model, including a history of the discrepancy between experiment and Monte Carlo.
We also describe past bootstrap studies of the O(2) model and motivate the calculation in
this work.

The simplest continuum field theory in the O(2) universality class is the theory of a

5



Summary
Proposed that the natural formulation of the WGC is in terms of the self-
binding energy of a particle

This leads to a CFT dual statement which is that the spectrum of charged 
operators should be convex

Seems to hold in all the examples we tested so far

In the absence of a general argument/proof, we need to keep testing it, 
searching for counter-examples (and learning what is special about them 
if they exist…)

Experimental predictions/tests?



Thank You



A simple supersymmetric counter-example to 𝑞6 = 1 ∶

Can consider single chiral superfield:  𝑊 = 𝑔ΦD

In 3 dimensions flows to IR interacting fixed point, in 4 dimensions IR free

Global 𝑈 1 E symmetry with charges: Scalar 𝑞4 =
5
D
, fermion 𝑞F = − :

D

Consider 4-dimensional free theory, then have

Δ 2 = 1, Δ 1 = D
5

Requires taking 𝑞6 = 2, and then convexity seems natural (but not proven) 
from BPS bound: 

Δ 2𝑛 > 𝑛 Δ(2)


