Large Charge on a Conformal Manifold

Adar Sharon

Focus Week on Quantum Mechanical Systems at Large Quantum Number

Based on 2008.01106 with M. Watanabe

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

For all operators of charge $Q \gg 1$, what is the smallest dimension $\Delta(Q)$?

CFTs fall into different phases:

1. Superfluid phase: the theory is dominated by a Goldstone mode for the spontaneously broken symmetry. $\Delta(Q) \sim Q^{\frac{d}{d-1}}$ Example: 3d $\mathcal{N} = 2$ theory with $W = \Phi^3$ ("SUSY Ising model").

For all operators of charge $Q \gg 1$, what is the smallest dimension $\Delta(Q)$?

CFTs fall into different phases:

- 1. Superfluid phase: the theory is dominated by a Goldstone mode for the spontaneously broken symmetry. $\Delta(Q) \sim Q^{\frac{d}{d-1}}$ Example: 3d $\mathcal{N} = 2$ theory with $W = \Phi^3$ ("SUSY Ising model").
- 2. Free scalar phase: dominated by axio-dilaton. $\Delta(Q) \sim Q$ Example: 3d $\mathcal{N} = 2$ theory with W = XYZ ("XYZ model")

For all operators of charge $Q \gg 1$, what is the smallest dimension $\Delta(Q)$?

CFTs fall into different phases:

- 1. Superfluid phase: the theory is dominated by a Goldstone mode for the spontaneously broken symmetry. $\Delta(Q) \sim Q^{\frac{d}{d-1}}$ Example: 3d $\mathcal{N} = 2$ theory with $W = \Phi^3$ ("SUSY Ising model").
- 2. Free scalar phase: dominated by axio-dilaton. $\Delta(Q) \sim Q$ Example: 3d $\mathcal{N} = 2$ theory with W = XYZ ("XYZ model")

3. Free fermion phase.
$$\Delta(Q) \sim Q^{\frac{d}{d-1}}$$

Superfluid phase: 3d $\mathcal{N} = 2$ with $W = \Phi^3$.

At large charge, dimensional analysis gives one possible term:

$$K = |\Phi|^{3/2}$$

Fermions decouple, and we are left with an effective action for $\phi = |\phi|e^{i\chi}$. Integrating out $|\phi|$ we find

From which we find

$$\mathcal{L} = |\partial \chi|^3$$

$$\Delta(Q) \sim Q^{3/2}$$

Free scalar phase: $3d \mathcal{N} = 2$ theory with W = XYZ.

Theory has a moduli space ($X \neq 0, Y = Z = 0 + \text{permutations}$). X^n is BPS, and so $\Delta_{X^n} = \frac{2}{3}n$

Due to BPS bound, this must be smallest dimension. So $\Delta(Q) \sim Q$

Universality Classes

Focus on two phases:

- 1. Superfluid phase: $\Delta \sim Q^{\frac{a}{d-1}}$
- 2. Free scalar phase: $\Delta \sim Q$

Are these really fundamentally different?

Look for a parameter τ which interpolates between these phases:

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

Universality Classes

Examples:

- 1. The O(2) model with $\tau = 4 d = \epsilon$ using the ϵ expansion [Badel,Cuomo,Monin,Rattazzi; Watanabe; Arias-Tamargo,Rodriguez-Gomez,Russo].
- 2. The O(N) model with $\tau = 1/N$ [Alvarez-Guame,Orlando,Reffert].

Is there a unitary, continuous example relating these two phases?

Consider the 3d $\mathcal{N} = 2$ theory with three chiral superfields *X*, *Y*, *Z* and superpotential

$$W = g(XYZ + \tau(X^3 + Y^3 + Z^3))$$

The theory has a $U(1)_R$ -symmetry:

$$X \to e^{2i\alpha}X, \quad Y \to e^{2i\alpha}Y, \quad Z \to e^{2i\alpha}Z$$

Can study the theory at large $U(1)_R$ charge.

Large Charge on a Conformal Manifold

Consider the 3d $\mathcal{N} = 2$ theory with three chiral superfields X,Y,Z and superpotential

$$W = g(XYZ + \tau(X^{3} + Y^{3} + Z^{3}))$$

Important points:

- $\tau = 0$: XYZ model (free scalar phase)
- $\tau = \infty$: (3 copies of) the 3d $\mathcal{N} = 2$ Ising model (superfluid phase)

 τ is **exactly marginal** [Leigh-Strassler], and so interpolates between the phases.

$$W = g(XYZ + \tau(X^3 + Y^3 + Z^3))$$

Conformal manifold is compact and topologically a sphere.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

$$W = g(XYZ + \tau(X^3 + Y^3 + Z^3))$$

There exists an S_4 duality relating different values of τ [Baggio,Bobev,Chester,Lauria,Pufu]. Generators:

 $\tau \to \omega \tau, \quad \tau \to \overline{\tau}, \quad \tau \to \frac{\tau + 2\omega^2}{\omega \tau - 1}$ Where $\omega = e^{\frac{2\pi i}{3}}$. Can thus focus on a "fundamental domain" in τ -plane.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

$$W = g(XYZ + \tau(X^{3} + Y^{3} + Z^{3}))$$

Unfortunately, effective action at large charge is extremely complicated (many possible terms).

Examples of allowed terms in scale-invariant effective action:

- $|X|^{\alpha_1}|Y|^{\alpha_2}|Z|^{\alpha_3}$ with $\alpha_1 + \alpha_2 + \alpha_3 = 3/2$
- $|\alpha_1 X + \alpha_2 Y + \alpha_3 Z|^{3/2}$

Symmetries are not enough to make this problem tractable.

$$W = g(XYZ + \tau(X^{3} + Y^{3} + Z^{3}))$$

Instead, study the conformal manifold in the $d = 4 - \epsilon$ expansion.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

Compute the operator dimension at large charge, $\Delta(Q, \tau, \epsilon)$.

Following [Badel,Cuomo,Monin,Rattazzi], we compute

$$\Delta(Q,\tau,\epsilon) = \frac{1}{\epsilon} \Delta_0(\lambda_1,\lambda_2) + \Delta_1(\lambda_1,\lambda_2) + \cdots$$

where $\lambda_1 = \epsilon Q$, $\lambda_2 = \epsilon Q |\tau|^2$.

Consists of finding a semiclassical saddle at fixed background charge.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

$$\Delta(Q,\tau,\epsilon) = \frac{1}{\epsilon} \Delta_0(\lambda_1,\lambda_2) + \Delta_1(\lambda_1,\lambda_2) + \cdots$$

• Δ_0 (classical contribution): solve EOMs to find vevs

$$X = \cdots, Y = \cdots, Z = \cdots$$

and plug the solution back into the energy density on the cylinder.

$$\Delta(Q,\tau,\epsilon) = \frac{1}{\epsilon} \Delta_0(\lambda_1,\lambda_2) + \Delta_1(\lambda_1,\lambda_2) + \cdots$$

• Δ_0 (classical contribution): solve EOMs to find vevs

$$X = \cdots, Y = \cdots, Z = \cdots$$

and plug the solution back into the energy density on the cylinder.

• Δ_1 : look at fluctuations around saddle point. Consists of summing Casimir energies:

$$\Delta_1 = \frac{1}{2} \sum_{fields} \sum_{l \in modes} n_l \omega_l,$$

where ω_l is the dispersion relation at level l and n_l is the level l.

Large Charge Expansion

Start with classical contribution Δ_0 .

Find four solutions to EOMs at fixed charge:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} Ae^{i\mu t} \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} Ae^{i\mu t} \\ Ae^{i\mu t} \\ Ae^{i\mu t} \end{pmatrix}, \quad \begin{pmatrix} Ae^{i\mu t} \\ Ae^{i\mu t} \\ Ae^{i\mu t + \frac{2\pi i}{3}} \end{pmatrix}, \quad \begin{pmatrix} Ae^{i\mu t} \\ Ae^{i\mu t} \\ Ae^{i\mu t - \frac{2\pi i}{3}} \end{pmatrix}$$

For constants μ , A.

Which is the global minimum?

Interchange of Operator Dominance

It turns out that the global minimum changes as we vary τ .

Focus on fundamental domain.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

Compute
$$\Delta = \frac{1}{\epsilon} \Delta_0 + \Delta_1$$
. Long and boring computation....

Three interesting limits to consider:

- 1. For $Q \gg \frac{1}{\epsilon |\tau|^2}$, expect a superfluid phase
- 2. For $Q \ll \frac{1}{\epsilon |\tau|^2}$ and $Q \ll \frac{1}{\epsilon}$, expect free scalar phase
- 3. For $Q \ll \frac{1}{\epsilon |\tau|^2}$ and $Q \gg \frac{1}{\epsilon}$, expect BPS behavior

Interesting limits:

1. For
$$Q \gg \frac{1}{\epsilon |\tau|^2}$$
, i.e. close to the X^3 fixed point, we find

$$\Delta \sim \frac{1}{\epsilon |\tau|^2} (\epsilon |\tau|^2 Q)^{\frac{4}{3}} \left(1 + \frac{\epsilon}{9} \log(\epsilon |\tau|^2 Q)\right)$$

In this limit we expected

$$\Delta \sim Q^{\frac{d}{d-1}} = Q^{\frac{4-\epsilon}{3-\epsilon}} = Q^{\frac{4}{3}} (1 + \frac{\epsilon}{9} \log Q + \cdots)$$

And so this exactly fits at leading order in ϵ .

Interesting limits:

2. For
$$Q \ll \frac{1}{\epsilon |\tau|^2}$$
 and $Q \ll \frac{1}{\epsilon}$, i.e. close to the *XYZ* fixed point, we find

$$\Delta = \frac{d-1}{3}Q + \frac{\epsilon Q}{6(2+|\tau|^2)}(|\tau|^2 Q - 4 + 2\sqrt{4-5|\tau|^2 + |\tau|^4} + |\tau|^2)$$

Note:

- Saturate the BPS bound at $\tau = 0$ (as expected for XYZ model), $\Delta_{BPS}(Q) = \frac{d-1}{2}Q$.
- Also saturate bound at $\epsilon \rightarrow 0$.
- Q > 3 it is always above the BPS bound.

Interesting limits:

3. For
$$Q \ll \frac{1}{\epsilon |\tau|^2}$$
 and $Q \gg \frac{1}{\epsilon}$, still expect near-BPS behavior

$$\Delta = \frac{d-1}{3}Q + \frac{|\tau|^2 Q}{2}\epsilon Q \ (1+3\epsilon\log\epsilon Q)$$

Indeed see BPS behavior at $\tau \rightarrow 0$.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

Interchange of Operator Dominance

Which operator has lowest dimension?

- At $\tau = 0$ (XYZ model): X^Q (or Y^Q or Z^Q)
- At $\tau = \infty (X^3 \text{ model}): (XYZ)^Q$

So as a function of τ we find a transition.

Can we go to $Q \sim O(1)$?

In O(2) model and X^3 model, results obtained at large Q were extrapolated to $Q \sim O(1)$ and were in good agreement with numerical results. What about in our model?

Two issues with $Q \sim O(1)$: 1. At $Q \leq 2$ and small ϵ , the dimension is smaller than the BPS bound: $\Delta(Q) - \Delta_{BPS}(Q) \sim -\epsilon$

2. Take Q = 3. There is a BPS operator with Q = 3. But we find $\Delta(Q = 3) > \Delta_{BPS}(Q = 3)$

Large Charge on a Conformal Manifold

Can we go to $Q \sim O(1)$?

Possible subtlety: found four saddle points, which exchange dominance at the edges of the fundamental region:

When they are close to degenerate – expect nonperturbative corrections $\epsilon e^{-Q^{\#}}$.

Adar Sharon (WIS)

Large Charge on a Conformal Manifold

Summary

1. Discussed large charge on a conformal manifold in the ϵ -expansion.

$$W = g(XYZ + \tau(X^{3} + Y^{3} + Z^{3}))$$

2. $\Delta(Q)$ transitions from free scalar phase to superfluid phase continuously as a function of τ .

- 3. Interesting phenomena at large charge:
 - Lowest-dimension operator depends on τ .
 - Multiple saddle points which exchange dominance as a function of τ .

Future Directions

- 1. Effective action directly in 3d?
- 2. Continuous transition from free fermion phase to another phase?
- 3. More examples; N=4 SYM? 3d CS-matter theories at large N?
- 4. More examples with instanton corrections? Explicit computations of these?

Thank You!

Adar Sharon (WIS)

Large Charge on a Conformal Manifold