
Thermal one-point functions and single-valued

polylogarithms: a spurious remark or

something deeper?

Based on T.P & A. Stergiou 1806.02340 (PRL) and T.P. 2105.03530 (PLB)

Tassos Petkou

September 2, 2021

Division of Theoretical Physics

School of Physics

Aristotle University of Thessaloniki

Greece



Table of contents

1. Introduction and Motivation

2. The conformal OPE in nontrivial geometries

3. The OPE inversion formula

4. Thermal one-point functions from the effective action (thermal free

energy)

5. Thermal one-point functions as single-valued polylogarithms.

6. Outlook

7. Extra material

1



Introduction and Motivation



CFTs in nontrivial geometries: generalities

There is a deep connection between the RG and the coupling

of CFTs to nontrivial background geometries.

Conformal transformations of d-dimensional flat space (i.e. with

metric ηµν) are coordinate reparametrizations xµ 7→ x ′µ(x) that

preserve the norm of vectors up to a scale factor.

xµ 7→ x ′µ : ds2 = ηµνdx
µdxν 7→ ds ′2 = ηµνdx

′µdx ′ν ≡ Ω2(x)ds2

⇒ ηµν
∂x ′µ

∂xρ
∂x ′ν

∂xσ
= Ω2(x)ηρσ

• Hence, conformal transformations are equivalent to a local rescaling

of the flat metric ηµν 7→ Ω2(x)ηµν i.e.

– either we work with the coordinates x ′µ and metric ηµν ,

– or we use the original coordinates xµ and the metric Ω2(x)ηµν .

• In d = 2 x ′µ(x) are general analytic functions of xµ.

• In d > 2 x ′µ(x) are at most quadratic in xµ.

2



CFTs in nontrivial geometries: generalities

CFTs are those QFTs that have a number (sometime finite in d = 2,

certainly infinite in d > 2) of quasiprimary local operators O(x) that

under conformal transformations behave as

xµ 7→ x ′µ : O(x)
∣∣∣
η
7→ O′(x ′)

∣∣∣
η

= Ω∆(x)O(x ′)
∣∣∣
η
≡ Ω∆(x)O(x)

∣∣∣
Ω2η

where ∆ is the scaling dimension. (I considered scalars for simplicity.)

• The conformal Ward identities express the invariance of correlation

functions under conformal transformations

xµ 7→ x ′µ : 〈O(x)...〉
∣∣∣
η
7→〈O′(x ′)...〉

∣∣∣
η

= Ω∆(x)〈O(x ′)...〉
∣∣∣
η

≡ Ω∆(x)〈O(x)...〉
∣∣∣
Ω2η
≡ 〈O(x)...〉

∣∣∣
η

• The simplest example: the 2pt function of a scalar field φ(x) with

dimension ∆. Under the scale transformation xµ → x ′µ = λxµ for

which Ω = λ we have

〈φ(x1)φ(x2)〉 =
1

x2∆
12

→ 〈φ′(x ′1)φ′(x ′2)〉 = λ2∆ 1

(x ′12)2∆
≡ 〈φ(x1)φ(x2)〉
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CFTs in nontrivial geometries: generalities

CFT correlators in the nontrivial - but conformally flat - geom-

etry Ω2ηµν are fully determined by the flat space correlators.

• Consider the 2-pt function of scalars in flat space. Going to spherical

coordinates ~x → (r ,Ωd−1) with ds2 = dr2 + r2dΩ2
d−1 one has

〈O(~x1)O(~x2)〉 =
1

~x2∆
12

→

→ 〈O(r1, θ)O(r2, 0)〉 =
1

(~r1 − ~r2)2∆
=

1

(r2
1 + r2

2 − 2r1r2 cos θ)∆

• If there was a conformal transformation of flat space with metric ηµν
to the metric Ω2(x)ηµν , the Ward identity would give

[Ω(r1, θ)Ω(r2, 0)]−∆〈O(r1, θ)O(r2, 0)〉
∣∣∣
η

= 〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η
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CFTs in nontrivial geometries: example in d = 2

• In d = 2 all analytic transformations are conformal transformations

since for ds2 = dx2 + dy2 = dzdz̄ , z = x + iy , z̄ = x − iy and

under the general analytic transformations z 7→ z ′ = f (z),

z̄ 7→ z̄ ′ = f̄ (z̄) we have

ds2 7→ ds ′2 = ∂z f (z)∂z̄ f̄ (z̄)dzdz̄ ≡ Ω2(z , z̄)ds2

• Choosing f (z) = L ln(z/L) and f̄ (z̄) = L ln(z̄/L) we find

ds2 7→ ds ′2 =
L2

zz̄
dzdz̄ =

L2

x2 + y2
[dx2 + dy2] ≡ L2

r2
[dr2 + r2dθ2]

• Now, we observe the the metric shown in the last equality is actually

the reparametrization of the metric on R× S1 i.e. under

r = Le
ρ
L ⇒ ds2 ≡ L2

r2
[dr2 + r2dθ2] = dρ2 + L2dθ2
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CFTs in nontrivial geometries: example in d = 2

• So we have

〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η
≡ 〈O(ρ1, θ)O(ρ2, 0)〉

∣∣∣
R×S1

=
1

L2∆

1(
2 cosh ρ1−ρ2

L − 2 cos θ
)∆

• The metric reparametrization above generalises for all d > 2 as

r = Le
ρ
L ⇒ ds2 ≡ L2

r2
[dr2 + r2dΩ2

d−1] = dρ2 + L2dΩ2
d−1

However, there is no conformal transformation of flat d-dimensional

space with Ω2(r ,Ωd−1) = L2/r2, so CFT correlation functions on

R× Sd−1 cannot be determined by those on Rd .

6



CFTs in nontrivial geometries: Weyl invariance

• One possibility is to consider Weyl invariant QFTs. These are QFTs

that have operators O(x) with a definite behaviour under general

local Weyl rescalings of the flat metric

ηµν 7→ Ω2(x)ηµν ⇒ O(x) 7→ O′(x) = Ω∆(x)O(x)

• The above behaviour is independent of the spin of the operator O(x).

This leads to the corresponding Ward identities expressing Weyl

invariance of correlation functions as

Ω∆(x)〈O(x)...〉
∣∣∣
Ω2η
≡ 〈O(x)...〉

∣∣∣
η

• So, for Weyl invariant theories

[Ω(r1, θ)Ω(r2, 0)]−∆〈O(r1, θ)O(r2, 0)〉
∣∣∣
η

= 〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η

=

≡ 〈O(ρ1, θ)O(ρ2, 0)〉
∣∣∣
R×Sd−1

=
1

L2∆

1(
2 cosh ρ1−ρ2

L − 2 cos θ
)∆
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CFTs in nontrivial geometries: Weyl invariance

• Weyl invariance connects background effective actions with the RG.

Consider the renormalised effective action Wr [gµν , J] of a theory

coupled to gµν(x) and a scalar source J(x) with Weyl-weight (i.e.

scaling dimension) d −∆. For constant Weyl rescalings we have

δgµν(x) = 2gµν(x) , δJ(x) = (d −∆)J(x)

hence we have the following local form if the RG flow equation

µ
d

dµ
Wr =

(
µ
∂

∂µ
+

∫
ddx
√
g

(
2gµν

δ

δgµν
+ (d −∆)J(x)

δ

δJ(x)

))
Wr = 0

µ is the RG mass scale, absent in CFTs except in the presence of

anomalies.

• Conformal invariance in flat space implies Weyl invariance in a general

background (??) [e.g. M. Luty et. al. (2017)].
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CFTs in nontrivial geometries: recap

In two-dimensional CFTs correlators in the thermal geometry

R× S1
L are fully determined by those on R2.

In d > 2 it appears that only for Weyl invariant theories

correlators in R× Sd−1
L are fully determined by those on Rd .

However, the thermal geometries S1
L × Rd−1, although confor-

mally flat, are not related neither by a conformal transformation

nor by a Weyl rescaling to Rd for d > 2.

We generally need additional data to describe CFTs in thermal

geometries for d > 2. What are these additional data, and

how are they related to the RG properties of QFTs?
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The conformal OPE in nontrivial

geometries



The conformal OPE in nontrivial geometries: generalities

• The conformal OPE is the statement that quasiprimary operators

form a complete basis for operator products in a CFT i.e. for scalars

φ(x1)φ(x2) =
1

x2∆
12

1 +
∑
Os

1

x
2(∆−∆s

2 + s
2 )

12

[x12 · Os(x2)]

where [x12 · Os(x2)] denotes the spin-s, dimension-∆s contribution

with all its descendants.

• Using the OPE for correlators in nontrivial geometries we could

evaluate them if we knew the 1-pt functions 〈Os(x)〉 for the relevant

quasiprimary operators.

• Nevertheless, for 1-pt functions we generically have

〈O(x)〉Ω2ηµν = [Ω(x)]−∆〈O(x)〉ηµν = 0 for O(x) 6= 1

and we need to be careful.
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The conformal OPE in nontrivial geometries: d = 2 example

• Since since all 1-pt functions vanish on Rd , namely 〈O(x)〉
∣∣∣
η

= 0 and

in d = 2 the plane is conformally related to the thermal geometry it

would appear that all 1-pt functions of quasiprimary operators vanish.

• Nevertheless, in d = 2 there exist operators transforming anomalously

i.e. the energy momentum tensor

T (z)→ T ′(z ′) = [f ′(z)]2T (z ′)+
c

12
{f (z), z}1 , {f , z} =

f ′′′f ′ − 3
2 f
′′2

f ′2

• Using the above one obtains

〈T (z)〉R×S1
β

= − c

24

1

L2

• We conclude that thermal correlation functions in d = 2 do receive

contributions from nontrivial 1pt functions of non-quasiprimary

operators i.e. from conformal anomalies. Setting u = ρ cosφ and

Lθ = ρ sinφ the thermal 2-pt function becomes [J. Cardy (1986)]

〈φ(ρ, φ)φ(0, 0)〉 =
1

ρ2∆φ

[
1− ∆φ

12

ρ2

L2
cos 2φ+ · · ·

]
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The conformal OPE in nontrivial geometries: S1
β × Rd−1

• In the S1
β ×Rd−1 geometry the 1-pt functions of scalar quasiprimaries

can only depend on a single parameter as

〈O(x)〉S1
β×Rd−1 = 〈O(0)〉S1

β×Rd−1 =
bO
β∆O

• For SO(d) irreducible tensors we have

〈Tµν...(0)〉S1
β×Rd−1 =

bT
β∆T

(êµêν ...− traces)

where xµ = (τ, x) are coordinates on S1
β × Rd−1 with period

τ ∼ τ + β, r = |x | and θ ∈ [0, π] is a polar angle when Rd−1 is

written in spherical coordinates. êµ are unit vectors in the τ -direction.

• Then, the thermal two-point function takes the generic form

〈φ(x)φ(0)〉β ≡ g(r , cos θ) =
∑
Os

aOs

(
r

β

)∆Os Cνs (cos θ)

r2∆φ
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The conformal OPE in nontrivial geometries: S1
β × Rd−1

• Cνs (cos θ) are Gegenbauer polynomials with ν = d/2− 1.

• The coefficients aOs are given by

aOs =
s!

2s(ν)s

gφφOsbOs

COs

with COs and gφφOs the corresponding 2-pt and 3-pt function

coefficients, and (a)n the Pochhammer symbol.

• The unit operator 1 is the unique operator with dimension zero, and

here

a1 =
22∆φ−dΓ(∆φ)

π
d
2 Γ( d

2 −∆φ)

so that the momentum-space two-point function is unit-normalized.
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The conformal OPE in nontrivial geometries: d = 2 example

• The thermal 2-pt function gives (there is an extra factor of 2 in the

normalization of the d = 2 Gegenbauers)

aT =
gTbT
CT

= −∆φ

12

• Using the Ward identity we then find

gT =
d∆φ

d − 1
⇒ bT = −CT

24

confirming that the e.m. tensor coefficient CT coincides with the

conformal anomaly c in d = 2.

• There is yet another coefficient c̃ related to thermal 1-pt functions

〈Tττ 〉R×Sd−1
β

= −(d − 1)[fβ − f∞] =
bT
βd

= −2(d − 1)
ζ(d)

βd
c̃

where fβ is the free energy density. For d = 2 we see that c̃ ∼ c .
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The conformal OPE in nontrivial geometries: recap

The conformal OPE can be used to study correlators in non-

trivial geometries.

For general d > 2 we need additional data, in the form of 1-pt

functions, to determine the correlators.

Nevertheless, in d = 2 it appears as if the thermal correlator

is fully determined by the plane result. This is a consequence

of the fact that the only nonzero 1-pt functions are those of

anomalously transforming operators, and they depend on the

central charge. The latter cancels in the OPE.
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The OPE inversion formula



The OPE inversion formula: the Euclidean formula

• Further information regarding the thermal 2-pt function can be

obtained using an OPE inversion formula. [L. Iliesiu et. al. 1802.10266 (JHEP)]

• Complexifying ∆ one defines the spectral function a(∆, s) via

g(r , cos θ) =
∑
s

∮ −ε+i∞

−ε−i∞

d∆

2πi
a(∆, s)

Cνs (cos θ)

r2∆φ−∆

whose poles at ∆ = ∆Os with residues −aOs yield the physical

spectrum.

• Assuming that the physical poles lie on the right of the imaginary axis

one can close the contour clockwise for r < 1 (we set β = 1 from

now on) if a(∆, s) does not grow exponentially at infinity.
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The OPE inversion formula: the Euclidean formula

• We can then use the orthogonality of Gegenbauer polynomials to

project on a spin-s state and then integrate with a suitable power in

the region of convergence r ∈ [0, 1] to obtain a(∆, s) as

a(∆, s) =
1

Ns,ν

∫ 1

0

dr

r∆−2∆φ+1

∫ 1

−1

dx (1− x2)ν−
1
2 Cνs (x)g(r , x)

where

x = cos θ , Ns,ν =
21−2νπΓ(s + 2ν)

(s + ν)Γ(s + 1)Γ2(ν)

• This is termed Euclidean inversion formula.
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The OPE inversion formula: the Lorenzian formula

• Writing x = cos θ = (w + 1/w)/2 with w = e iθ one can transform

the Euclidean formula into a contour integral over the unit circle in

the complex-w plane.

• To exploit further the analytic structure of the 2-pt function

g(r , cos θ) one would like to allow w to explore the full complex

plane. This can be done by a suitable complexification of the

Euclidean variables r , θ, defining z = rw and z̄ = r/w which are now

independent real variables.

• As a function of w , i.e. in the w -plane, g(r ,w) has the cuts

(−∞,−1/r), (−r , 0), (0, r) and (1/r ,∞). One also has to assume

that it does not grow faster than w s0 (resp. 1/w s0 ) for large (resp.

small) w for some constant s0 > 0.
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The OPE inversion formula: the Lorenzian formula

• Moreover, one needs to use the analytic extension of the Gegenbauer

polynomials to the whole complex plane as [M. Costa et. al. 1209.4355 (JHEP)]

Cνs (w) =
Γ(s + 2ν)

Γ(ν)Γ(s + ν + 1)
(Fs(1/w)e iνπ + Fs(w)e−iνπ)

where

Fs(w) = w s+2ν
2F1(s + 2ν, ν; s + ν + 1;w2)
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The OPE inversion formula: the Lorenzian formula

• Then, the integral giving a(∆, s) will receive contributions from the

discontinuities across the cuts of g(r ,w) as well as from the arcs at

infinity. The final result is

a(∆, s) = aDisc(∆, s) + θ(s0 − s) aarcs(∆, s)

where

aDisc(∆, s) = Ks

∫ 1

0

dz̄

z̄

∫ ∞
1

dz

z

[
(zz̄)∆φ−∆

2 −ν

× (z − z̄)2νFs

(√
z̄

z

)
Disc[g(z , z̄)]

]
with

Ks = (1 + (−1)s)
Γ(s + 1)Γ(ν)

4πΓ(s + ν)

• The discontinuity relevant for the evaluation of the above integral is

the one across the cut (1/r ,∞), as all others are related to it.
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The OPE inversion formula: explicit example

Inversion formulae (i.e. spectral decompositions) are most use-

ful when there is an independent evaluation of the correlation

functions.

• For bosons (scalars) the simplest ansatz is to consider the

momentum-space thermal 2-pt function

G (d)(ωn, p) =
1

ω2
n + p2 + m2

th

, ωn = 2πn , n = 0,±1,±2, . . . ,

• This is motivated by known work on thermal field theory which shows

that fields develop generically a thermal mass mth at finite

temperature.

• We are actually asking whether the simple ansatz above can define a

thermal CFT. We make no reference to a Lagrangian, although it is

known that the 2-pt function can be obtained, for example, in the

large-N limit of the O(N) model [T. P. et. al. hep-th/9803149 (PLB) ].
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The OPE inversion formula: explicit example

• In arbitrary-d the above 2-pt function can be Fourier-transformed to

G (d)(τ, x) =
1

(2π)
d
2

∞∑
n=−∞

(
mth

|Xn|

)d
2−1

K d
2−1(mth|Xn|) , Xn = (τ − n, x)

where Kα(x) is the modified Bessel function of the second kind.

• Defining z = τ + i |x| we find |Xn| =
√

(n − z)(n − z̄).

• We focus on odd d = 2k + 1, k = 1, 2, . . . , and in that case we may

write

G (2k+1)(τ, x) =
1

2k+1πk

∞∑
n=− inf ty

mk−1
th

|Xn|k
e−mth|Xn|

k−1∑
p=0

Lk,p
(mth|Xn|)p

with

Lk,p =
(k − 1 + p)!

2pp!(k − 1− p)!
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The OPE inversion formula: explicit example

• The latter coefficients also appear in the Bessel polynomials

yn(x) =
n∑

p=0

Ln+1,p x
p =

√
2

πx
e1/xKn+ 1

2
(1/x)

• The relevant discontinuity Disc(G (d)) follows simply from

understanding the discontinuity of the function

f (k)(x) =
ak−1

(
√
x)k

e−a
√
x
k−1∑
p=0

Lk,p
(a
√
x)p

across the cut due to the square-root branch point at x = 0.

• Assuming that the cut goes from x = 0 to x =∞ we find that

Disc(f (k)(x)) =
2

xk−1

( 1√
−x

Uk(x) cos(a
√
−x) + Vk(x) sin(a

√
−x)

)
Uk(x) = 1

2

(
θk−1(

√
x) + θk−1(−

√
x)
)

Vk(x) =
1

2
√
x

(
θk−1(

√
x)− θk−1(−

√
x)
)

with θn(x) = xnyn(1/x) the so-called reverse Bessel polynomials. 23



The OPE inversion formula: explicit example

• We can now calculate the spectral function a(∆, s). For the

discontinuity part we find

a
(k)
Disc,0(∆, s) = (1 + (−1)s)

1

22s+ks!

Γ(k − 1
2 )

Γ(k + s − 1
2 )

×
k−1+s∑
n=0

2n+1

n!

(2(k − 1 + s)− n)!

(k − 1 + s − n)!
mn

th Li2k−1+s−n(e−mth )

where Liα(z) =
∑∞

n=1 z
n/nα is the polylogarithm.

• The result above follows just from the leading term in a z̄-expansion

of the inversion formula. It gives the contributions of higher-spin

conserved currents with ∆ = d − 2 + s.

• Subleading terms in the z̄-expansion, denoted as a
(k)
Disc,1, a

(k)
Disc,2, . . . . ,

would give the contributions of higher-twist operators.
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Gap equations from the inversion formula: bosonic case

• The arc part a
(d)
arcs(∆, s) is nonzero only for s = 0. We find

a(d)
arcs(∆, 0) =

1

2∆− d−5
2
√
π
m∆

thΓ
(
− ∆

2

)
Γ
(
− ∆− d + 2

2

)
• Notice that for mth = 0 only the ∆ = 0 term survives giving the

contribution of the identity operator. This, along with the

corresponding mth = 0 contributions from a
(k)
Disc(∆, s), yield the

spectrum of generalized free CFTs.

• When mth 6= 0 and for ∆ > 0 the above yields contributions of an

infinite tower of scalar operators with ∆ = 2m, m = 1, 2, . . . , as well

as contributions with ∆ = d − 2 + 2l , l = 0, 1, 2, . . . .

• The former correspond to operators of the form σm, m = 1, 2, . . . ,

where σ is the shadow of φ2.
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The conformal OPE in nontrivial geometries: recap

We have seen that thermal one-point functions represent addi-

tional data needed to describe CFTs in nontrivial (i.e. thermal)

geometries.

If one knew the thermal 2pt function one could read the

thermal one-point functions of all operators in the spectrum

using an conformal inversion formula of the OPE. Alternatively,

knowing the thermal one-point functions one might reconstruct

the thermal 2pt functions.

An important remaining question is: what are the physical

parameters that determine the thermal one-point functions and

how are they related to the RG propeprties of the CFT??
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Thermal one-point functions

from the effective action

(thermal free energy)



Thermal one-point functions from the free energy

A few words about systems at imaginary chemical potential

• The canonical partition function of a system at finite temperature

T = 1/β with a global U(1) charge operator Q̂ having integer

eigenvalues is

Zc(β,Q) =

∫ 2π

0

dθ

2π
e iθQ Tr

[
e−βĤ−iθQ̂

]
=

∫ 2π

0

dθ

2π
e iθQ Zgc(β, µ = −i θ

β
) ,

where Zgc(β, µ) is the grand canonical partition function with

imaginary chemical potential µ.

• The latter function exhibits certain periodicity properties wrt θ. For

example in SU(N) gauge theories with the fermion number operator

Q̂ is a multiple of N in the confining phase and Zgc(β, µ) will be

periodic with a θ-period 2π/N. However, in a high temperature

deconfining phase one should find a 2π θ-period i.e. the breaking of

ZN symmetry signals a deconfining transition [A. Roberge & N Weiss (1986)]
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Thermal one-point functions from the free energy

• Consider the Euclidean action action for a massive complex scalar

field φ(x) in odd d-dimensions in the presence of an imaginary

chemical potential (or equivalently in the presence of the temporal

component of real gauge potential)

SE (β;m, µ) =

∫ β

0

dτ

∫
dd−1~x |(∂τ − iµ)φ|2 + |~∂φ|2 + m2|φ|2 .

• To evaluate the grand canonical partition function and the

corresponding free energy (grand canonical potential) of the theory

one may cure the short distance singularity and other calibration

issues by subtracting the zero temperature mass and chemical

potential results to obtain

Zgc(β;m, µ) ≡ 1

Z (0; 0, 0)

∫
(Dφ̄)(Dφ)e−SE = e−βFgc (β;m,µ) .
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Thermal one-point functions from the free energy

• By a simple scaling argument the grand canonical free energy is

usually written as

Fgc(β;m, µ) =
Vd−1

βd
Cd(βm, βµ) ,

with Vd−1 the spatial volume.

• The dimensionless function Cd has been extensively studied over the

years e.g. [A. Castro-Neto et. al. (1992), T. Appelquist et. al. (1999), A. Leclair (2005)] as a measure

of the degrees of freedom along the RG, although it does not appear

to satisfy the requirements of a c-theorem [S. Giombi et. al. (2011)].

• Here I will point out some properties of Cd as a function of the

parameters m, µ and notably also d . These properties are nicely

presented using the set of complex variables

z = e−βm−iβµ , z = e−βm+iβµ ⇒ Cd(βm, βµ) ≡ Cd(z , z) .
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Thermal one-point functions from the free energy

• The calculation of Fgc can be done along the lines described in the

appendix of [T.P. et. al. (2018)] and yields

Cd(z , z) = −Kd lnd |z | − Sd−1

(2π)d−1

[
id(z , z) + īd(z , z)

]
,

where

Kd =
πSd

d(2π)d
1

sin(πd/2)
, Sd =

2πd/2

Γ(d/2)
.

• For d ≥ 3 the integral id(z , z) is given by

id(z , z) =

∫ z

0

dw

w

(
lnw − 1

2
ln

z

z

)[(
lnw − 1

2
ln

z

z

)2

− ln2 |z |

] d−3
2

ln(1−w)

and īd(z , z) is obtained from above by exchanging z ↔ z . For d = 1

we have i1(z) = − ln(1− z) and ī1(z) = − ln(1− z).
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Thermal one-point functions from the free energy

• For odd d the calculation of Cd can be reduced to a finite series of

iterating integrals and then to a finite double series using results such

as∫ z

0

dw

w

(
lnw − 1

2
ln

z

z

)k

ln(1− w) =
k∑
`=0

(−1)`+1k!

`!
ln` |z |Lik+2−`(z) ,

where Lin(z) are the usual polylogarithms.

• The result can be written as

id(z , z) + īd(z , z) = −
Γ
(
d+1

2

)
d − 1

Id+2(z , z) ,

with

Id(z , z) =

d−3
2∑

n=0

(−1)n(d − 3− n)!(
d−3

2 − n
)
!

2n lnn |z |
n!

[Lid−2−n(z) + Lid−2−n(z)] .
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Thermal one-point functions from the free energy

• In the simple free field theory studied here m2 and µ parametrize the

deformations of the free Hamiltonian by the operators O = |φ|2 and

Q = i φ̄
←→
∂τ φ, the latter being the charge density defined from the

U(1) current Jµ = i φ̄
←→
∂µφ.

• Evidently, the normalized thermal averages (integrated thermal

one-point functions) of the above deformations are obtained as

moments of the free energy. Assuming they are uniform i.e.∫
〈O(x)〉 = βVd−1〈O〉 one obtains

〈O〉d =
1

βd−2
D̂Cd(z , z) , D̂ =

1

2 ln |z |
(z∂z + z∂z)

〈Q〉d =
1

βd−1
L̂Cd(z , z) , L̂ = (z∂z − z∂z)

• Namely, 〈O〉d and 〈Q〉d are the responses of Cd along the radial and

angular directions in the two-dimensional space of massive and U(1)

deformations of the free CFTs. 32



Thermal one-point functions from the free energy

• To further unveil the physical content of the above it is instructive to

consider the case d = 1. This corresponds to a system of two

noninteracting harmonic oscillators with frequency ω ≡ m. The

twisted partition function of the oscillators is given by

Z1 = TrH1,2e
−βĤ+iβµQ̂ .

• The Hamiltonian and the twist operator are respectively

Ĥ =
2∑

i=1

p̂2
i

2
+

m2x2
i

2
, Q̂i = â†i âi , Q̂ = Q̂1 − Q̂2 ,

The trace in (1) is taken over the tensor product Hilbert space

H1,2 ≈ {|n1〉 ⊗ |n2〉}, n1, n2 = 0, 1, 2, ...
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Thermal one-point functions from the free energy

• Before I proceed with the trivial calculation, let me write the partition

function in the slightly unconventional way as follows

Z1 = TrH1,2e
−β(Ĥ0+m2Ô)+iβµN̂ , Ô =

1

2
(x̂2

i + x̂2
2 )

and Ĥ0 = (p̂2
1 + p̂2

2)/2 is the free Hamiltonian or equivalently in this

case the kinetic energy.

• Calculating the partition function one easily obtains

C1(z , z) = − ln |z |+ ln(1− z) + ln(1− z) ,

This matches the result for the free energy above for d = 1.
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Thermal one-point functions from the free energy

• The thermal averages of the operators Ô and Q̂ are given by

〈Ô〉1 = − β

2 ln |z |

[
1 + |z |2

(
1

z(1− z)
+

1

z(1− z)

)]
〈Q̂〉1 = |z |2

(
1

z(1− z)
− 1

z(1− z)

)
• Also recall that in our simple model there is a virial theorem at work

relating the thermal averages of the operator Ô and the Hamiltonan

Ĥ as

2ω2〈Ô〉1 = 〈Ĥ〉 ,

and therefore it is not surprising that the operator O is related to the

radial Hamiltonian in general d-dimensions.
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Thermal one-point functions from the free energy

• The generic formulae above yield an intimate connection among

theories in different dimensions. The crucial point is the following

result which can be proven by a direct calculation

D̂Cd(z , z) = − 1

4π
Cd−2(z , z) ,

for d = 1, 3, 5, .. with the boundary condition C−1(z , z) = −4π〈O〉1.

• Then from the above one obtains

Cd(z , z) = −4πβd〈O〉d+2

which shows that the free energy of the d-dimensional theory is

proportional to the one-point function of the operator O in

d + 2-dimensions. One also finds

〈O〉d = −4πβ2D̂〈O〉d+2 , 〈Q〉d = −4πβ2D̂〈Q〉d+2 ,
36



Thermal one-point functions from the OPE: test

• In the case of a real scalar field studied in [T.P & A. Stergiou (2018)], φ2 with

dimension ∆φ2 = d − 2 was the only relevant operator in the OPE

φ× φ which was not a shadow operator, and there were no currents

with odd spin. In the case of the complex scalar field studied here

there is another relevant operator which is not a shadow operator; this

is the s = 1 current Jµ with dimension ∆J = d − 1. The contribution

of the above two operators in the thermal two-point function is

g(r , cos θ) =
a

(d)
I

rd−2
+ [shadows] +

g
(d)
φφφ2

C
(d)
φ2

b
(d)
φ2 + r cos θ

g
(d)
φφJ

C
(d)
J

b
(d)
J + · · ·

• The OPE coefficients depend on the thermal mass and the imaginary

chemical potential, namely bOs = bOs (z , z).
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Thermal one-point functions from the OPE: test

• The operators φ2 and J0 correspond to the operators O and Q whose

thermal one-point functions are given by the general formulae given

previously.

• If one wanted the have a conformal OPE, then the arbitrary scale

parameter introduced in the theory by bφ2 should not be there.

Requiring its vanishing is the condition (gap equation) suggested in

[T.P & A. Stergiou (2018)] that determines the critical values of the thermal

mass and chemical potential. For µ = 0 this condition gives a class of

algebraic equations for high order polylogarithms and it explains the

critical behaviour of bosonic systems in generic even dimensions. (see

extra material).
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Thermal one-point functions from the OPE: test

• The thermal two-point function of the free theory is

g(r , cos θ;m, µ) =
1

(2π)
d
2

∞∑
n=−∞

e inµ
(

m

|Xn,ζ |

)ν
Kν (m|Xn,ζ |) ,

with Xn,ζ =
√

(n − ζ)(n − ζ̄), and ζ = re iθ.

• The n = 0 term gives the usual zero temperature result for the

massive two-point function, while the Bessel functions have

polynomial expansions for d odd.

• In d > 2 the zero temperature contribution has a divergent m→ 0

expansion where two cut-off independent terms stand out: the term

giving the massless two-point function and the r -independent term

proportional to md−2. In the OPE expansion these correspond to the

contribution of the unit and |φ|2 operators respectively.

• Notice that the contributions from shadow scalar operators come

from the process of the cut-off subtraction and renormalization of the

theory - which I assume that it can somehow be done and it does not

affect the results. 39



Thermal one-point functions from the OPE: test

• After some algebra I find

gφφφ2

Cφ2

bφ2 = aI
Γ
(
d−1

2

)
Γ(d − 2)

[
Γ
(
1− d

2

)
2
√
π

md−2 + Id(z , z̄)

]
,

gφφJ
CJ

bJ = −1

2
aI

Γ
(
d−1

2

)
Γ(d − 2)

Id(z , z̄)

where aI =
√

π
2

1

(2π)
d
2

1

2
d−3

2

Γ(d−2)

Γ( d−1
2 )

.

• The functions Id(z , z̄) was given above and Id(z , z) is

Id(z , z̄) =

d−1
2∑

n=0

(−1)n(d − 1− n)!(
d−1

2 − n
)
!

2n lnn |z |
n!

[Lid−1−n(z)− Lid−1−n(z)] .
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Thermal one-point functions as

single-valued polylogarithms.



Thermal one-point functions as single-valued polylogarithms

• The results for the free energy and the thermal one-point functions

are particular cases of the single-valued polylogarithms Pw (z , z)

constructed by Brown [F. C. Brown (2004), O. Schnetz (2013)]. Explicitly one observes

that for d ≥ 1

Id(z , z) = (−1)
d+1

2 Γ

(
d + 1

2

)
Pwd

(z , z) , wd ≡ 0{nd}10{nd} ,

with nd = (d − 3)/2.

• The index wd denotes a ”word” in the ”two-letter alphabet” {0, 1}
and one normalises such that P∅ = 1 and P0{n} = 2n lnn |z |/n!.

Notice that P1(z , z) = ln(1− z) + ln(1− z). It can be shown that

the single-valued polylogarithm Pwd
(z , z) satisfies for d ≥ 1

z∂zP0wd0(z , z) = P0wd
(z , z) , z∂zP0wd0(z , z) = Pwd0(z , z) ,

which are the form of Knizhnik-Zamolodhikov equations.
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Thermal one-point functions as single-valued polylogarithms

• Actually, one can show that the above yields the second order

differential equations studied e.g. in [J. Drummond (2012)]. The KZ-like

equations then imply

L̂P0wd0(z , z) = P0wd
(z , z)− Pwd0(z , z)

D̂P0wd0(z , z) =
1

nd + 1
Pwd

(z , z) =
2

d + 1
P0wd−20(z , z) ,

which are effectively a different form of the relationships given for the

free energy and the thermal one-point functions.
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Outlook



Outlook

• It is well-known that single-valued polylogarithms are closely related

to Feynman graphs in gauge and string theories. The observation

made in this work seems to connect two apparently different physical

quantities; thermal one-point functions in odd-dimensional theories

and multiloop graphs in N = 4 SYM in d = 4.

• Contrasting these two manifestations of single-valued polylogarithms

one notices that in the first case the variables z and z parametrise

relevant deformations of free CFTs while in the second case

parametrize spacetime points.

• Moreover, in the first case the order of the polylogarithms is related

to spacetime dimension while in the latter case to the number of

loops in the graphs.
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Outlook

• It would be nice to understand further the implications, if any, of our

observation. As a hint, one may consider interpreting the charge

one-point functions as higher-dimensional generalizations of the twist

one-point function operator in the system of two harmonic oscillators.

For example in d = 3 we find [T.P. et. al. (2018)]

4πβ2〈Q〉3 = −4iD(d) , D(z) = =Li2(z) + ln |z |Arg(1− z) ,

with D(z) the famous Bloch-Wigner function (single-valued

dilogarithm).
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Outlook

• D(z) appears in the simplest tree graph of N = 4 SYM

1

π2

∫
d4x

(x − x1)2(x − x2)2(x − x3)2(x − x4)2
=

1

x2
14x

2
23

4i

z − z̄
D(z)

where the change of variables is

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

12x
2
34

x2
14x

2
23

= (1− z)(1− z̄) ,
v

u
= zz̄

• What is perhaps less known is that the integral above can be

obtained as a limit that corresponds to a particular kind of twisting.

Namely, using a result given [T.P. (1994)] one obtains after some algebra

lim
ε→0

Γ(ε)
[
G

(4)
2−ε(v ,Y )− v εG

(4)
2+ε(v ,Y )

]
=

4i

z − z̄
D(z) ,

where G
(d)
∆ (v , u) is the standard d-dimensional conformal block of a

scalar operator with dimension ∆.
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Outlook

• The important point, first stressed in [T.P. (1994)] and explicitly

demonstrated in [F. Dolan & H. Osborn (2000)] is that the ε→ 0 divergence

cancels out in leaving a finite result. Hence, the first nontrivial ladder

graph gives a twisting of shadow scalar conformal blocks. Perhaps

this interpretation generalises to higher loops.

• One may also suspect the relevance of our results to recent works on

large-charge expansions where imaginary chemical potentials play an

important role [L. Alvarez-Gaume et. al. (2019]. In another direction, it would be

interesting to study the manifestation of the shuffle algebra of the

polylogarithms in the context of thermal field theories.
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Gap equations and vacuum structure of CFTs

• .. continuing the discussion of the gap equation: Notice that φ2

operator enters the spectrum both from the discontinuity part as well

as from the arc part of the spectral function.

• If we demand the absence of this operator from the spectrum the

two above contributions must cancel each other. This gives rise to a

condition that determines mth, namely

k−1∑
n=0

2n+1

n!

(2(k − 1)− n)!

(k − 1− n)!
mn

th Li2k−1−n(e−mth ) = − 1

2
√
π
m2k−1

th Γ(−k+ 1
2 )

• This is the so-called gap equation and it is here presented for any

d = 2k + 1, k = 1, 2, . . . .
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Gap equations and vacuum structure of CFTs

• The subleading terms in the give higher poles at

∆ = d − 2 + 2l , l = 1, 2, . . . ,. These correspond to scalar operators

of the form φ∂2lφ.

• Such operators also arise from subleading terms in the z̄ expansion of

of the discontinuity parts of the spectral function., namely from

a
(k)
Disc,1, a

(k)
Disc,2, . . . . These operators should also disappear from the

spectrum when the gap equation is satisfied.

• Although we have verified this in a couple of cases, we do not have a

general proof as yet.
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Gap equations from the inversion formula: bosonic case

• The arc contribution of the identity operator provides a quick

consistency check of our computations. Since the identity operator

has ∆ = 0 we see that the pole associated with it appears due to

Γ(−∆
2 ).

• For the residue find

Res
∆=0

(a(d)
arcs(∆, 0)) = −2

d−3
2

√
π

Γ( d
2 − 1)

• This exactly reproduces the correct normalization of the identity

operator (in our conventions).
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Gap equations and vacuum structure of CFTs

• The Bloch-Wigner function D(z) ≡ D2(z) gives the volume of ideal

tetrahedra in Euclidean hyperbolic space H3 whose four vertices lie in

∂H3 at the points 0, 1,∞, and z (z is a dimensionless cross ratio

here). These tetrahedra are the building blocks for general hyperbolic

manifolds - the volume of the latter arises as the sum of ideal

tetrahedra after a suitable triangulation [e.g. Zagier].

• It is known [Witten (98), Gukov (03)] that complex SL(2,C) Chern-Simons

theory with purely imaginary level corresponds, at least semi

classically, to Euclidean three-dimensional gravity with negative

cosmological constant. We have shown in [T.P. et. al. (18)] that 〈Q〉3 arises

as a purely imaginary Chern-Simmons level in the 3d fermionic model

coupled to background monopole operator. This way we may be able

to understand the presence of hyperbolic volumes in the gap

equations and eventually in the free energy of our models.
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Gap equations and vacuum structure of CFTs

• It is also possible to study finite-temperature fermionic 2-pt functions

using the inversion formula. The simplest case to consider is the

singlet projection of the two-point functions of Dirac fermions ψi (x),

ψ̄i (x) in odd dimensions,

〈ψi (x)ψ̄i (0)〉β ≡ g̃(r , cos θ) =
∑
Õs 6=1

ãÕs

(
r

β

)∆Õs Cνs (cos θ)

r2∆ψ

with ∆ψ = ∆φ + 1/2 and i , j = 1, 2, . . . , 2
d−1

2 spinor indices.

• This vanishes at zero temperature which is is a manifestation of the

fact that the unit operator is absent in the finite-temperature OPE.

• The corresponding unit-normalized momentum-space 2-pt function is

G̃ (d)(ωn, p) =
m̃th

ω2
n + p2 + m̃2

th

where the fermionic Matsubara frequencies are ωn = 2π(n + 1/2),

n = 0,±1,±2, . . . .
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Gap equations and vacuum structure of CFTs

• The fermionic propagator vanishes for m̃th = 0 so we will only

consider m̃th 6= 0 in the fermionic case from now on. The calculations

follow closely the bosonic case e.g. it is known that fermionic

Matsubara sums reduce to a linear combination of bosonic ones.

• We then notice that by virtue of the relationship ∆ψ = ∆φ + 1/2, the

fermionic formulas can all be obtained from the bosonic ones by the

simple shift ∆→ ∆− 1.

• The arc contributions in the fermionic case are thus given by

ã(d)
arcs(∆, 0) = − 1

2∆− d−3
2
√
π
m̃∆−1

th Γ
(
− ∆− 1

2

)
Γ
(
− ∆− d + 1

2

)
• This gives operators of dimension ∆ = 2m + 1 and ∆ = d − 1 + 2m,

m = 0, 1, 2, . . . .
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Gap equations and vacuum structure of CFTs

• The former are contributions that do not arise from the discontinuity

part, having the form σ̃m with σ̃ the shadow field of ψ̄ψ. Note that,

as expected, there is no contribution from the unit operator.

• The latter provide contributions from operators of the form ψ̄∂2mψ

that coincide with those coming from the discontinuity.

• The fermionic gap equation is the condition for the cancellation of

the latter operators from the spectrum and it reads

k−1∑
n=0

2n+1

n!

(2(k − 1)− n)!

(k − 1− n)!
m̃n+1

th Li2k−1−n(−e−m̃th ) = − 1

2
√
π
m̃2k

th Γ(−k+ 1
2 )
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Gap equations and vacuum structure of CFTs

The Lorentzian inversion formula together with an ansatz for

the form of the thermal 2-t function can be used to bootstrap

bosonic and fermionic CFTs in arbitrary odd-d dimensions.

The nontrivial dynamics corresponds to a rearrangement of the

operator spectrum. The gap equation arises as the condition

that certain classes of operators drop out from the spectrum

of the nontrivial CFT.

The resulting picture for the operator spectrum corresponds

to the well-known large-N CFTs that arise from a generalised

Hubbard-Stratonovich transformation (see later).
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Further lessons from the gap equation: solutions

• The bosonic gap equation in d = 3 reads

−mth = 2 log(1− e−mth )

with the well-known solution (related to the ”golden mean”)

m
(d=3)
th = 2 log( 1+

√
5

2 ) ≈ 0.96242

• In d = 5 the bosonic gap equation becomes

−1
6m

3
th = Li3(e−mth ) + mth Li2(e−mth )

This has a complex conjugate pair of solutions given numerically by

m
(d=5)
th ≈ 1.17431± 1.19808i
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Gap equations and vacuum structure of CFTs

• In fact, we find that for d = 3, 7, 11, . . . the bosonic gap equation has

a unique real solution for mth and complex solutions that come in

conjugate pairs - except for d = 3 where there are no complex

solutions. i.e. in d = 7 we find a real and a pair of complex conjugate

solutions.

• For d = 5, 9, 13, . . . we do not find any real solutions, and the

gap equation only has pairs of complex conjugate solutions. I.e.

d = 5 we only find the solutions above, while in d = 9 we find four

complex conjugate pairs of solutions. Notice also that mth = 0 is

never a solution of the bosonic gap equations.

56



Gap equations and vacuum structure of CFTs

• The fermionic gap equations in d = 3, 5 are given respectively by

−m̃2
th = 2m̃th log(1 + e−m̃th ) ,

− 1
6 m̃

4
th = m̃th Li3(−e−m̃th ) + m̃2

th Li2(−e−m̃th )

• For d = 3 and m̃th 6= 0 The fermionic gap equation has only a pair of

complex conjugate imaginary solutions m̃
(d=3)
th = ±2πi/3. For d = 5

it has a pair of opposite real solutions, as well as a pair of complex

conjugate imaginary ones which can be found numerically.

• This pattern continues to higher dimensions, namely for

d = 7, 11, 15, . . . there is no real solution to the corresponding

fermionic gap equation, while for d = 9, 13, 17, . . . there is

always a pair of opposite real solutions and an increasing

number of complex conjugate ones.
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Gap equations and vacuum structure of CFTs

The above pattern for the solutions of bosonic and fermionic

gap equations for all odd-d fits nicely with a renormalization-

group understanding of universality classes of scalars and

fermions in general dimensions.

• In the bosonic case the standard lore is that the large-N universality

class for scalars in d = 2k + 1, k = 1, 2, . . . , is accessible via the ε

expansion starting from d = 2k + 2.

• The Hubbard–Stratonovich transformation introduces a field σ via the

classically marginal interaction σφ2. σ has dimension ∆σ = 2 in all d ,

and the scalars φ can be integrated out resulting in an effective

potential of the general form

Veff(σ) ∼ Trd log(−∂2 + σ) + g∗σ
d
2 + · · ·

with g∗ some critical dimensionless coupling.
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Gap equations and vacuum structure of CFTs

• For general d the effective potential can also receive contributions

from terms involving derivatives of σ, but the term σ
d
2 is universal.

• Performing the Trd log calculation in d − ε one finds that for

d = 4, 8, 12, . . . there is a resulting contribution of the form σ
d
2 log σ2,

which is positive and dominates for large σ. Thus, besides various

possible local minima, the effective potential has a global minimum.

• On the other hand, for d = 6, 10, 14, . . . the term σ
d
2 leads to an

unbounded potential, and hence to the absence of a global

minimum, regardless of the sign of the Trd log contribution. This

matches exactly the pattern we see for mth: a real mth implies a

global minimum, while a complex mth signals unstable local

extrema with nonzero decay width.

59



Gap equations and vacuum structure of CFTs
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Gap equations and vacuum structure of CFTs

• In the fermionic case our results are consistent with large-N

universality classes in d = 2k + 1, k = 1, 2, . . . that are accessible via

the ε expansion starting from a generalization of the

Gross–Neveu–Yukawa model to d = 2k + 2 [P. Zinn-Justin NPB B367 (1991)]

• The corresponding Hubbard–Stratonovich transformation introduces

σ̃ via the classically marginal interaction σ̃ψ̄ψ. Here σ̃ has dimension

∆σ̃ = 1 in all d , and one gets an effective potential of the form the

Trd log term enters with the opposite sign

Veff(σ̃) ∼ −Trd log(/∂ + σ̃) + g̃∗σ̃
d + · · ·

• σ̃d gives always a bounded from below contribution (recall d is even).

However, the Trd log term changes sing as d − ε: for d = 4, 8, 12, . . .

it gives a negative contribution that dominates at infinity leading to

an unstable vacuum structure, while for d = 6, 10, 14, . . . it gives a

positive contribution that guarantees the presence of a global

minimum. In either case there can be a number of unstable extrema.

This matches the obtained pattern for the m̃th. 61
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