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Context: the relativistic O(2) model

It is now well-established that [Hellerman, Orlando, Re�ert, Watanabe '15] [Cuomo '20]
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in (d + 1)-dimensions. The second line comes from the one-loop

Casimir energy, based on the spectrum
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+O(Q− 2
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with multiplicity (2l+d−1)Γ(l+d−1)
Γ(l+1)Γ(d) on the d-sphere.
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Context: the relativistic O(2) model
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Today's results

In the nonrelativistic case with Schrödinger symmetry, I'll show that

[VP '21]
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Does not include quantum corrections, and some bi 's contain
logQ-terms when d is even. Dispersion relation [Kravec, Pal '18]

ωn,l =

√
4n

d
(n + l + d − 1) + l +O(Q− 2

3d ),

with multiplicity (2l+d−2)Γ(l+d−2)
Γ(l+1)Γ(d−1) on the (d − 1)-sphere.
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Today's results

Typically, [Kravec, Pal '18] [Orlando, VP, Re�ert, '20] [Hellerman, Swanson '20] [VP '21]

∆
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and [Son, Wingate '05] [Kravec, Pal '18] [Orlando, VP, Re�ert, '20] [VP '21] [Hellerman, Orlando,

VP, Re�ert, Swanson, to appear]
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Outline

• Classical expansion of ∆Q

• Leading-order e�ective action
• Subleading operators
• Structure of the expansion

• Intermezzo

• Casimir energy in d = 3
• Finding the ζ-function
• Renormalizing the Casimir energy

• Conclusion
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Leading-order e�ective action
State-operator correspondence: couple to external harmonic trap.

[Werner, Castin '05] [Nishida, Son '07] [Goldberger, Khandker, Prabhu '14]

The leading-order nlsm Lagrangian reads (ℏ = m = ω = 1)

LLO = c0U
d
2
+1,

(relativistic: LLO = c0(∂χ)
d+1) where

U = χ̇− 1

2
r2 − 1

2
(∂iχ)

2

(imposed by general coordinate invariance [Son, Wingate '05]).

Super�uid GS: ⟨χ⟩ = µ · t, where µ = chemical potential. Then,

⟨U⟩ = µ− 1

2
r2 ≡ µ · z ,

where z ≡ 1− r2

2µ ≡ 1− r2

R2
cl
, with Rcl ≡

√
2µ.
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Leading-order e�ective action

Ground-state charge density:

⟨ρ⟩ = ⟨∂LLO

∂χ̇
⟩ = ⟨∂LLO

∂U
⟩ ∼ ⟨U

d
2 ⟩ ∼ (µ · z)

d
2 ,

i.e. particles con�ned in a (classically) spherical cloud of radius Rcl .

Thus, µ depends on the charge as (ζ = constant)

µ = ζQ
1
d .

Ground-state energy [Kravec, Pal '18] [Orlando, VP, Re�ert, '20] [VP '21]

∆Q =
d

d + 1
ζQ

d+1
d .
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Remark on the dimensionless z-coordinate

The GS preserves spherical symmetry → use z ≡ 1− r2

2µ , with

(∂ i f (x⃗))(∂ ig(x⃗)) =
2(1− z)

µ
f ′(z)g ′(z),

∇2f (x⃗) =
2
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[
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2
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]
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0

dz (1− z)
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2 f (z),

where primes refer to derivatives with respect to z and f , g are

spherically invariant functions.
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Subleading operators

Besides U and (∂ iU)2, the only operator with a nonzero VEV is

Z = ∇2A0 −
1

d
(∇2χ)2,

with ⟨Z ⟩ = d . Therefore, in the bulk, all operators are of the form

O(m,n)
bulk ≡ (∂ iU)2mZnU

d
2
+1−(3m+2n),

where m and n are integers. Using Eq. (8), we see that∫
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(Classical) structure of the large-charge expansion of ∆Q

Generic contribution

∫
cloud

ddx ⟨Õ(m,n)
bulk ⟩ ∼ µd+1−2(m+n) · Γ

(
d

2
+ 2− (3m + 2n)

)

• If Γ-function is �nite → expansion in µ−2 ∼ Q− 2
d starting at

µd+1 ∼ Q
d+1
d , as in the relativistic case.

• In particular, when d is odd and d + 1 = 2(m + n) →
Q0-term. This hints at a pole in the Casimir energy.
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(Classical) structure of the large-charge expansion of ∆Q

Generic contribution

∫
cloud

ddx ⟨Õ(m,n)
bulk ⟩ ∼ µd+1−2(m+n) · Γ

(
d

2
+ 2− (3m + 2n)

)

• When d is even and d + 4 = 6m + 4n → pole.

• Let d + 4 = 6m + 4n − 2ϵ, so that∫
cloud

ddx ⟨Õ(m,n)
bulk ⟩ ∼ µ
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3
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ϵ
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3
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]
.

i.e. a classical non-universal µ
2d−1−2n

3 logµ ∼ Q
2d−1−2n

3d logQ.
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(Classical) structure of the large-charge expansion of ∆Q

Edge counterterms [Hellerman, Swanson '20] [VP '21]

Zn
edge ≡ Zn · δ(U) · (∂iU)

d+4(1−n)
3

with contribution

∆Q ∋ µ
2n−1−2n

3 ∼ Q
2n−1−2n

3d .

The corresponding Wilsonian coe�cient κn thus gets renormalized:

κn = κren.n +
cst

ϵ
.

On top of taking care of edge divergences, counterterms trigger an

expansion in µ− 2
3 ∼ Q− 2

3d starting at µ
2d−1
3 ∼ Q

2d−1
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(Classical) structure of the large-charge expansion of ∆Q

Moreover, since µ = ζQ
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where some bn = cst + cst · logQ when d is even.
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Experiments

Trapped gases were observed in the lab long before the

state-operator correspondence was found!

Cf. e.g. reviews [Dalfovo, Giorgini, Pitaevskii, Stringari '98] [Giorgini, Pitaevskii, Stringari '08]
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BCS-BEC crossover and the unitary Fermi gas



Introduction Classical expansion of ∆Q Intermezzo Casimir energy in d = 3 Conclusion

BEC in a harmonic trap

Ground-state energy of the BEC for a large number Q of trapped

particles [Dalfovo, Giorgini, Pitaevskii, Stringari '98]

E0 = d1Q
7
5 + d2Q

3
5 logQ + . . .

The logQ-term is obtained by regularizing edge divergences.

Can we understand this better now?
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Finding the ζ-function

Compute

ECasimir ≡
1
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n,l=0
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De�ne instead
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and focus on d = 3− 2ϵ.
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Finding the ζ-function
Use the binomial expansion:

E (s) =
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d

4

)s ∞∑
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where the Mordell-Tornheim zeta function ζMT (s1, s2, s3) is

ζMT (s1, s2, s3) ≡
∞∑

n,l=1

l−s1n−s2(n + l)−s3 .

It leads to
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1

2
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+ regular.
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Renormalizing the Casimir energy
Pick any operator with m + n = 2 and Wilsonian coe�cient c :

c ·
∫
cloud

ddx ⟨Õ(m,n)
bulk ⟩ = cαµ−2ϵ = cα

[
1− 2ϵ logµ+O(ϵ2)

]
,

where α is a constant. Renormalize c to cancel the pole:
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ϵ→0
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]
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1

α
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where c ren. is regular. Then,

ECasimir + c ·
∫
cloud

ddx ⟨Õ(m,n)
bulk ⟩ = 1√

3
logµ+ Q0 × (regular)

=
1

3
√
3
logQ + Q0 × (regular)
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Summary
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where some bn = cst + cst · logQ when d is even. In particular,
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where we included the leading qu. correction, which is universal.
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Outlook

• Include spin [Kravec, Pal '19]

• Gravity dual [Son '08] [Balasubramanian, McGreevy '08]

• BCS-BEC crossover

• Non-Abelian Sp(N) at large-N [Veillette, Sheehy, Radzihovsky '06] [Sachdev,

Nikolic '06]
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Thanks for the attention!
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