Operator spectrum of NRCFTs at large charge

Vito PELLIZZANI

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics

University of Bern
30th of August, 2021

Based on [Orlando, VP, Reffert '20], [VP '21]
[Hellerman, Orlando, VP, Reffert, Swanson, to appear]

Classical expansion of Δ_{Q}

Intermezzo

Context: the relativistic $O(2)$ model

It is now well-established that [Hellerman, Orlando, Reffert, Watanabe '15] [Cuomo '20]

$$
\begin{aligned}
\Delta_{Q} & =Q^{\frac{d+1}{d}}\left[\alpha_{1}+\frac{\alpha_{2}}{Q^{\frac{2}{d}}}+\frac{\alpha_{3}}{Q^{\frac{4}{d}}}+\ldots\right] \\
& +Q^{0}\left[\beta_{0}+\frac{\beta_{1}}{Q^{\frac{2}{d}}}+\frac{\beta_{2}}{Q^{\frac{4}{d}}}+\ldots\right]+\ldots
\end{aligned}
$$

in $(d+1)$-dimensions. The second line comes from the one-loop
Casimir energy, based on the spectrum

$$
\omega_{l}=\sqrt{\frac{I(I+d-1)}{R^{2} d}}+\mathcal{O}\left(Q^{-\frac{2}{d}}\right)
$$

with multiplicity $\frac{(2 /+d-1) \Gamma(I+d-1)}{\Gamma(I+1) \Gamma(d)}$ on the d-sphere.

Context: the relativistic $O(2)$ model

Typically,

$$
\Delta_{Q}^{(d=2)}=\alpha_{1} Q^{\frac{3}{2}}+\alpha_{2} \sqrt{Q}-0.0937+\ldots
$$

and

$$
\Delta_{Q}^{(d=3)}=\alpha_{1} Q^{\frac{4}{3}}+\alpha_{2} Q^{\frac{2}{3}}-\frac{1}{48 \sqrt{3}} \log Q+\alpha_{3}+\ldots
$$

Today's results

In the nonrelativistic case with Schrödinger symmetry, I'll show that [VP '21]

$$
\begin{aligned}
\Delta_{Q} & =Q^{\frac{d+1}{d}}\left[a_{1}+\frac{a_{2}}{Q^{\frac{2}{d}}}+\frac{a_{3}}{Q^{\frac{4}{d}}}+\ldots\right] \\
& +Q^{\frac{2 d-1}{3 d}}\left[b_{1}+\frac{b_{2}}{Q^{\frac{2}{3 d}}}+\frac{b_{3}}{Q^{\frac{4}{3 d}}}+\ldots\right] \\
& +Q^{\frac{d-3}{3 d}}\left[c_{1}+\frac{c_{2}}{Q^{\frac{2}{3 d}}}+\frac{c_{3}}{Q^{\frac{4}{3 d}}}+\ldots\right]+\ldots
\end{aligned}
$$

Does not include quantum corrections, and some b_{i} 's contain $\log Q$-terms when d is even. Dispersion relation [Kravec, Pal '18]

$$
\omega_{n, l}=\sqrt{\frac{4 n}{d}(n+l+d-1)+l}+\mathcal{O}\left(Q^{-\frac{2}{3 d}}\right)
$$

with multiplicity $\frac{(2 I+d-2) \Gamma(I+d-2)}{\Gamma(I+1) \Gamma(d-1)}$ on the $(d-1)$-sphere.

Today's results

Typically, [Kravec, Pal '18] [Orlando, VP, Reffert, '20] [Hellerman, Swanson '20] [VP '21]

$$
\Delta_{Q}^{(d=2)}=d_{1} Q^{\frac{3}{2}}+d_{2} \sqrt{Q} \log Q+d_{3} \sqrt{Q}+d_{4} Q^{\frac{1}{6}}-0.2942+\ldots
$$

and [Son, Wingate '05] [Kravec, Pal '18] [Orlando, VP, Reffert, '20] [VP '21] [Hellerman, Orlando, VP, Reffert, Swanson, to appear]

$$
\Delta_{Q}^{(d=3)}=d_{1} Q^{\frac{4}{3}}+d_{2} Q^{\frac{2}{3}}+d_{3} Q^{\frac{5}{9}}+d_{4} Q^{\frac{1}{3}}+d_{5} Q^{\frac{1}{9}}+\frac{1}{3 \sqrt{3}} \log Q+d_{6}+\ldots
$$

Outline

- Classical expansion of Δ_{Q}
- Leading-order effective action
- Subleading operators
- Structure of the expansion
- Intermezzo
- Casimir energy in $d=3$
- Finding the ζ-function
- Renormalizing the Casimir energy
- Conclusion

Classical expansion of Δ_{Q}

Intermezzo

Casimir energy in $d=3$

Conclusion

Leading-order effective action

State-operator correspondence: couple to external harmonic trap.
[Werner, Castin '05] [Nishida, Son '07] [Goldberger, Khandker, Prabhu '14]
The leading-order nlsm Lagrangian reads $(\hbar=m=\omega=1)$

$$
\mathcal{L}_{L O}=c_{0} U^{\frac{d}{2}+1},
$$

(relativistic: $\mathcal{L}_{L O}=c_{0}(\partial \chi)^{d+1}$) where

$$
U=\dot{\chi}-\frac{1}{2} r^{2}-\frac{1}{2}\left(\partial_{i} \chi\right)^{2}
$$

(imposed by general coordinate invariance [son, Wingate 'os]).
Superfluid GS: $\langle\chi\rangle=\mu \cdot t$, where $\mu=$ chemical potential. Then,

$$
\langle U\rangle=\mu-\frac{1}{2} r^{2} \equiv \mu \cdot z,
$$

where $z \equiv 1-\frac{r^{2}}{2 \mu} \equiv 1-\frac{r^{2}}{R_{c}^{2}}$, with $R_{c l} \equiv \sqrt{2 \mu}$.

Leading-order effective action

Ground-state charge density:

$$
\langle\rho\rangle=\left\langle\frac{\partial \mathcal{L}_{L O}}{\partial \dot{\chi}}\right\rangle=\left\langle\frac{\partial \mathcal{L}_{L O}}{\partial U}\right\rangle \sim\left\langle U^{\frac{d}{2}}\right\rangle \sim(\mu \cdot z)^{\frac{d}{2}},
$$

i.e. particles confined in a (classically) spherical cloud of radius $R_{c l}$.

Thus, μ depends on the charge as ($\zeta=$ constant $)$

$$
\mu=\zeta Q^{\frac{1}{d}} .
$$

Ground-state energy [Kravec, Pal '18] [Orlando, VP, Reffert, '20] [VP '21]

$$
\Delta_{Q}=\frac{d}{d+1} \zeta Q^{\frac{d+1}{d}}
$$

Remark on the dimensionless z-coordinate

The GS preserves spherical symmetry \rightarrow use $z \equiv 1-\frac{r^{2}}{2 \mu}$, with

$$
\begin{aligned}
& \left(\partial_{i} f(\vec{x})\right)\left(\partial_{i} g(\vec{x})\right)=\frac{2(1-z)}{\mu} f^{\prime}(z) g^{\prime}(z) \\
& \nabla^{2} f(\vec{x})=\frac{2}{\mu}\left[(1-z) f^{\prime \prime}(z)-\frac{d}{2} f^{\prime}(z)\right] \\
& \int_{\text {cloud }} \mathrm{d}^{d} x f(\vec{x})=\frac{(2 \pi \mu)^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)} \int_{0}^{1} \mathrm{~d} z(1-z)^{\frac{d-2}{2}} f(z)
\end{aligned}
$$

where primes refer to derivatives with respect to z and f, g are spherically invariant functions.

Subleading operators

Besides U and $\left(\partial_{i} U\right)^{2}$, the only operator with a nonzero VEV is

$$
Z=\nabla^{2} A_{0}-\frac{1}{d}\left(\nabla^{2} \chi\right)^{2}
$$

with $\langle Z\rangle=d$. Therefore, in the bulk, all operators are of the form

$$
\mathcal{O}_{\text {bulk }}^{(m, n)} \equiv\left(\partial_{i} U\right)^{2 m} Z^{n} U^{\frac{d}{2}+1-(3 m+2 n)},
$$

where m and n are integers. Using Eq. (8), we see that

$$
\begin{aligned}
\int_{\text {cloud }} \mathrm{d}^{d} x\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle & \sim \mu^{d+1-2(m+n)} \cdot \int_{0}^{1} \mathrm{~d} z(1-z)^{\frac{d}{2}-1+m} z^{\frac{d}{2}+1-(3 m+2 n)} \\
& \sim \mu^{d+1-2(m+n)} \cdot \frac{\Gamma\left(\frac{d}{2}+m\right) \Gamma\left(\frac{d}{2}+2-(3 m+2 n)\right)}{\Gamma(d+2-2(m+n))} .
\end{aligned}
$$

(Classical) structure of the large-charge expansion of Δ_{Q}

Generic contribution

$$
\int_{\text {cloud }} \mathrm{d}^{d} \times\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle \sim \mu^{d+1-2(m+n)} \cdot \Gamma\left(\frac{d}{2}+2-(3 m+2 n)\right)
$$

- If Γ-function is finite \rightarrow expansion in $\mu^{-2} \sim Q^{-\frac{2}{d}}$ starting at $\mu^{d+1} \sim Q^{\frac{d+1}{d}}$, as in the relativistic case.
- In particular, when d is odd and $d+1=2(m+n) \rightarrow$ Q^{0}-term. This hints at a pole in the Casimir energy.
(Classical) structure of the large-charge expansion of Δ_{Q}
Generic contribution

$$
\int_{\text {cloud }} \mathrm{d}^{d} \times\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle \sim \mu^{d+1-2(m+n)} \cdot \Gamma\left(\frac{d}{2}+2-(3 m+2 n)\right)
$$

- When d is even and $d+4=6 m+4 n \rightarrow$ pole.
- Let $d+4=6 m+4 n-2 \epsilon$, so that
$\int_{\text {cloud }} \mathrm{d}^{d} x\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle \sim \mu^{\frac{2 d-1-2 n}{3}}\left[-\frac{1}{\epsilon}+\frac{2}{3} \log \mu-\gamma_{E}+\mathcal{O}(\epsilon)\right]$.
i.e. a classical non-universal $\mu^{\frac{2 d-1-2 n}{3}} \log \mu \sim Q^{\frac{2 d-1-2 n}{3 d}} \log Q$.
(Classical) structure of the large-charge expansion of Δ_{Q}
Edge counterterms [Helleman, Swanson '20] [VP '21]

$$
Z_{\text {edge }}^{n} \equiv Z^{n} \cdot \delta(U) \cdot\left(\partial_{i} U\right)^{\frac{d+4(1-n)}{3}}
$$

with contribution

$$
\Delta_{Q} \ni \mu^{\frac{2 n-1-2 n}{3}} \sim Q^{\frac{2 n-1-2 n}{3 d}} .
$$

The corresponding Wilsonian coefficient κ_{n} thus gets renormalized:

$$
\kappa_{n}=\kappa_{n}^{r e n .}+\frac{c s t}{\epsilon}
$$

On top of taking care of edge divergences, counterterms trigger an expansion in $\mu^{-\frac{2}{3}} \sim Q^{-\frac{2}{3 d}}$ starting at $\mu^{\frac{2 d-1}{3}} \sim Q^{\frac{2 d-1}{3 d}}$.
(Classical) structure of the large-charge expansion of Δ_{Q} Moreover, since $\mu=\zeta Q^{\frac{1}{d}}\left[1+\mathcal{O}\left(Q^{-\frac{d+2}{3 d}}\right)\right]$, we get

$$
\begin{aligned}
\Delta_{Q} & =\mu^{d+1}\left[a_{1}+\frac{a_{2}}{\mu^{2}}+\frac{a_{3}}{\mu^{4}}+\ldots\right] \\
& +\mu^{\frac{2 d-1}{3}}\left[b_{1}+\frac{b_{2}}{\mu^{\frac{2}{3}}}+\frac{b_{3}}{\mu^{\frac{4}{3}}}+\ldots\right]+\ldots \\
& =Q^{\frac{d+1}{d}}\left[a_{1}+\frac{a_{2}}{Q^{\frac{2}{d}}}+\frac{a_{3}}{Q^{\frac{4}{d}}}+\ldots\right] \\
& +Q^{\frac{2 d-1}{3 d}}\left[b_{1}+\frac{b_{2}}{Q^{\frac{2}{3 d}}}+\frac{b_{3}}{Q^{\frac{4}{3 d}}}+\ldots\right] \\
& +Q^{\frac{d-3}{3 d}}\left[c_{1}+\frac{c_{2}}{Q^{\frac{2}{3 d}}}+\frac{c_{3}}{Q^{\frac{4}{3 d}}}+\ldots\right]+\ldots
\end{aligned}
$$

where some $b_{n}=c s t+c s t \cdot \log Q$ when d is even.

Intermezzo

Conclusion

Experiments

Trapped gases were observed in the lab long before the state-operator correspondence was found!

Cf. e.g. reviews [Dalfovo, Giorgini, Pitaevskii, Stringari '98] [Giorgini, Pitaevskii, Stringari '08]

BCS-BEC crossover and the unitary Fermi gas

Based on
Sa de Melo, MR \& Engelbrecht, PRL (1993)
from: Sa de Melo, Phys. Today (Oct. 2008)

BEC in a harmonic trap

Ground-state energy of the BEC for a large number Q of trapped particles [Dalfovo, Giorgini, Pitaevskii, Stringari '98]

$$
E_{0}=d_{1} Q^{\frac{7}{5}}+d_{2} Q^{\frac{3}{5}} \log Q+\ldots
$$

The $\log Q$-term is obtained by regularizing edge divergences.
Can we understand this better now?

Intermezzo

Casimir energy in $d=3$

Conclusion

Finding the ζ-function

Compute
$E_{\text {Casimir }} \equiv \frac{1}{2} \sum_{n, l=0}^{\infty} \sqrt{\frac{4 n}{d}(n+I+d-1)+I} \cdot \frac{(2 I+d-2) \Gamma(I+d-2)}{\Gamma(I+1) \Gamma(d-1)}$,
Define instead
$E(s) \equiv \frac{1}{2} \sum_{n, l=0}^{\infty}\left[\frac{4 n}{d}(n+I+d-1)+I\right]^{-s} \cdot \frac{(2 I+d-2) \Gamma(I+d-2)}{\Gamma(I+1) \Gamma(d-1)}$
and focus on $d=3-2 \epsilon$.

Finding the ζ-function

Use the binomial expansion:

$$
\begin{aligned}
E(s) & =\left(\frac{d}{4}\right)^{s} \sum_{k, k_{1}, k_{2}, k_{3}=0}^{\infty}\binom{-s}{k}\binom{1}{k_{1}}\binom{-s-k}{k_{2}}\binom{-s-k}{k_{3}} \\
& \times\left(-\frac{15}{16}\right)^{k}\left(-\frac{1}{2}\right)^{k_{1}}\left(-\frac{1}{4}\right)^{k_{2}}\left(-\frac{3}{4}\right)^{k_{3}} \\
& \times \zeta_{M T}\left(k_{1}+2 \epsilon-1 ; s+k+k_{2} ; s+k+k_{3}\right),
\end{aligned}
$$

where the Mordell-Tornheim zeta function $\zeta_{M T}\left(s_{1}, s_{2}, s_{3}\right)$ is

$$
\zeta_{M T}\left(s_{1}, s_{2}, s_{3}\right) \equiv \sum_{n, l=1}^{\infty} I^{-s_{1}} n^{-s_{2}}(n+I)^{-s_{3}}
$$

It leads to

$$
E_{\text {Casimir }}=\frac{1}{2 \sqrt{3} \epsilon}+\text { regular }
$$

Renormalizing the Casimir energy

Pick any operator with $m+n=2$ and Wilsonian coefficient c :

$$
c \cdot \int_{\text {cloud }} \mathrm{d}^{d} x\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle=c \alpha \mu^{-2 \epsilon}=c \alpha\left[1-2 \epsilon \log \mu+\mathcal{O}\left(\epsilon^{2}\right)\right],
$$

where α is a constant. Renormalize c to cancel the pole:

$$
\lim _{\epsilon \rightarrow 0} \epsilon \cdot\left[E_{\text {Casimir }}+c \int_{\text {cloud }} \mathrm{d}^{d} x\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle\right]=0
$$

i.e.

$$
c=c^{r e n .}-\frac{1}{2 \sqrt{3} \epsilon} \frac{1}{\alpha},
$$

where $c^{\text {ren. }}$ is regular. Then,

$$
\begin{aligned}
E_{\text {Casimir }}+c \cdot \int_{\text {cloud }} \mathrm{d}^{d} x\left\langle\tilde{\mathcal{O}}_{\text {bulk }}^{(m, n)}\right\rangle & =\frac{1}{\sqrt{3}} \log \mu+Q^{0} \times(\text { regular }) \\
& =\frac{1}{3 \sqrt{3}} \log Q+Q^{0} \times(\text { regular })_{\boldsymbol{U}^{\text {Unviversitat }}}^{\text {BERN }}
\end{aligned}
$$

Classical expansion of Δ_{Q}

Intermezzo

$$
\text { Casimir energy in } d=3
$$

Conclusion

Summary

$$
\begin{aligned}
\Delta_{Q} & =Q^{\frac{d+1}{d}}\left[a_{1}+\frac{a_{2}}{Q^{\frac{2}{d}}}+\frac{a_{3}}{Q^{\frac{4}{d}}}+\ldots\right] \\
& +Q^{\frac{2 d-1}{3 d}}\left[b_{1}+\frac{b_{2}}{Q^{\frac{2}{3 d}}}+\frac{b_{3}}{Q^{\frac{4}{3 d}}}+\ldots\right] \\
& +Q^{\frac{d-3}{3 d}}\left[c_{1}+\frac{c_{2}}{Q^{\frac{2}{3 d}}}+\frac{c_{3}}{Q^{\frac{4}{3 d}}}+\ldots\right]+\ldots
\end{aligned}
$$

where some $b_{n}=c s t+c s t \cdot \log Q$ when d is even. In particular,

$$
\Delta_{Q}^{(d=2)}=d_{1} Q^{\frac{3}{2}}+d_{2} \sqrt{Q} \log Q+d_{3} \sqrt{Q}+d_{4} Q^{\frac{1}{6}}-0.2942+\ldots
$$

and
$\Delta_{Q}^{(d=3)}=d_{1} Q^{\frac{4}{3}}+d_{2} Q^{\frac{2}{3}}+d_{3} Q^{\frac{5}{9}}+d_{4} Q^{\frac{1}{3}}+d_{5} Q^{\frac{1}{9}}+\frac{1}{3 \sqrt{3}} \log Q+d_{6}+\ldots$,
where we included the leading qu correction which is universal $\boldsymbol{\mu}_{\text {ERRN }}^{\text {Ben }}$

Outlook

- Include spin [Kravec, Pal '19]
- Gravity dual [Son '08] [Balasubramanian, McGreevy '08]
- BCS-BEC crossover
- Non-Abelian $\operatorname{Sp}(N)$ at large- N [Veillette, Sheehy, Radzihovsky '06] [Sachdev, Nikolic '06]

Thanks for the attention!

