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What is the Large quantum number expansion?

1 It is limited to theories with global symmetries.

2 It allows the analytic treatment of otherwise inaccessible
strogly coupled systems.

The idea

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large Q is the controlling parameter in a
perturbative expansion.
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In this talk

Consider the O(2N) vector model in 2 + 1 dimensions.

Fine tuned, in the IR it flows to a conformal fixed point.

Use large charge to compute the scaling dimension of the
lowest primary operator.

∆Q =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 − 0, 094 +O(Q−1/2).
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What you should remember

1 The 0.094 is a prediction of the theory.
2 The large charge expansion seems to work for small charges!

Why?
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No reason for the large charge expansion to work at small Q
from the EFT point of view.

Can add another controlling parameter, e.g. large N and go
beyond the EFT.

Use the double scaling limit:
Q →∞, N →∞, Q/(2N) = q̂ = constant
to solve the problem exactly.

The expansion is asymptotic.

Asymptotic series = non-perturbative phenomena = resurgent
asymptotics.
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Start with the Landau-Ginzburg model for N complex fields
on R×M

S [φi ] =
N∑
i=1

∫
dtdM

[
gµν(∂µφi )

∗(∂νφi ) + rφ∗i φi +
u

2
(φ∗i φi )

2

]
The system flows to a Wilson-Fisher fixed point in the IR, i.e.
u →∞, when r is fined tuned to the conformal coupling, i.e.
r = R/8.

Work in sector of fixed charge Q.
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In the limit:

N →∞, Q →∞, q̂ = Q/(2N) = fixed

express the free energy as the Legendre transform of a zeta
function.

f (q̂) = F/(2N) = sup
µ

(mq̂ − ω(µ)) Free energy per dof

q̂ =
d(ω(µ))

dµ
Charge

ω(µ) = −1

2
ζ

(
− 1

2

∣∣∣M, µ

)
Grand potential

where µ is the chemical potential.
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• ζ
(
s
∣∣M, µ

)
is the Hurwitz zeta function of the operator −∆ +µ2.

• In the Mellin representation

ζ
(
s
∣∣M, µ

)
=

1

Γ(s)

∞∫
0

dt ts−1 e−µ
2t Tr

(
e∆t
)
.

• Large q̂ is large µ. Can be written in terms of Seeley-DeWitt
coefficients:

Tr
(
e∆t
)
∼ V

4πt

(
1 +

R

12
t + . . .

)
.
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• First let’s take M = T 2.
• All but the first Seeley-DeWitt coefficients vanish, hence:

Tr
(
e∆t
)
∼ L2

4πt
+O(e−1/t), ζ

(
s
∣∣T 2, µ

)
=

L2µ2(1−s)

4π(s − 1)
+O(eµ)

• Use these to derive:

ω(µ) =
L2µ3

12π
, q̂ =

L2µ2

4π
, f (q̂) =

4
√
π

3L
q̂3/2.

• We can do better, closed form expression of the corrections.
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• Through the spectrum:

spec
(
∆T 2

)
=

{
− 4π2

L2

(
k1

2 + k2
2
)∣∣k1, k2 ∈ Z

}
.

• The heat kernel trace is

Tr
(
e∆t
)

=
∑

k1,k2∈Z
e−

4π2

L2

(
k1

2+k2
2
)
t =

[
θ3(0, e−

4π2

L2 t)

]2

the square of a theta function.
• For t small we can use Poisson resummation∑

n∈Z
h(n) =

∑
k∈Z

∫
R
dρh(ρ)e2πikρ

and expand around t → 0+.
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• Then

Tr
(
e∆t
)

=

[
L√
4πt

(
1 +

∑
k∈Z

e−
k2L2

4t

)]2

=
L2

4πt

(
1 +

∑
k∈Z2

e−
‖k‖2L2

4t

)
• Now we can find the subleading contribution to the grand
potential and free energy

f (q̂) = sup
µ

(mq̂ − ω(µ)) =
4
√
π

3L
q̂3/2

(
1−

∑
k

e−‖k‖
√

4πq̂

8‖k‖2πq̂
+ . . .

)
,

ω(µ) = −1

2
ζ
(
− 1

2

∣∣∣T 2, µ
)

=
L2µ3

12π

(
1 +

∑
k

e−‖k‖µL

‖k‖2µ2L2

(
1 +

1

‖k‖µL

))
.
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• Now let’s study the sphere of radius r , M = S2.
• The spectrum is

spec(∆S2) =

{
− `(`+ 1)

r2

∣∣∣` ∈ N
}
,

with multiplicity 2`+ 1.
• Again use Poisson resummation to write the heat kernel as
follows

Tr
[
e

(
∆

S2− 1
4r2

)
t
]

=
∞∑
`=0

(2`+ 1)e
− t

r2 (`+ 1
2

)2

=
r 2

t
+
∑
k∈Z

(−1)k
[
r 2

t
− 2|k|πr 3

t3/2
F (
πr |k|√

t
)

]
,

where

F (z) = e−z2
∫ z

0

dte−t2

=

√
π

2
e−z2

erfi(z).
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• For small t, we can use the asymptotic expansion of F (z)

F (z) ∼
∞∑
n=0

(2n − 1)!!

2n+1

(1

z

)2n+1
.

and

Tr
[
e

(
∆S2− 1

4r2

)
t
]

=
r2

t
−
∞∑
n=1

(−1)n(1− 21−2n)

n!r2n−2
B2nt

n−1 ≡ r2

t

∞∑
n=0

αn

( t

r2

)n
.

• The series is asymptotic since the Seeley-DeWitt coefficients diverge
like n!:

B2n = (−1)n+1 2(2n)!

(2π)2n
ζ(2n)→ αn =

(−1)n+1(1− 21−2n)

n!
B2n ∼

2√
π

n−1/2

π2n
n!.

• We assume that this series can be completed into a resurgent trans-series.
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• In general a trans-series solution with a small parameter z has
the form for z → 0:

Φ(σk , z) = Φ(0)(z) +
∑
k 6=0

σke
−Ak/z

1/βk z−bk/βk Φ(k)(z).

• The coefficients of the non-perturbative part are encoded in the
large-order behavior of the perturbative series:

αn ∼
∑
k

Sk
2πi

βk

Anβk+bk
k

∞∑
`=0

α
(k)
` A`kΓ(βkn + bk − `),

where Sk are Stokes constants.
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• In this case we have complete knowledge of the αn and we write
them in the suggestive form:

αn = − 1√
π

∑
k 6=0

(−1)k
Γ(n + 1

2 )

(πk)2n
.

• Comparing the two expressions

β = 1, bk =
1

2
, Ak = (πk)2,

Sk
2πi

α
(k)
0 = (−1)k+1|k|

√
π, α

(k)
>0 = 0.

• The series around each exponential are truncated to only one term and
the heat trace has to contain the terms

Tr
[
e

(
∆S2− 1

4r2

)
t
]
⊃ 2i

(πr2

t

) 3
2

(−1)k+1|k |e−(kπr)2/t .

• The result is defined up to a k-dependent complex constant hence
resurgence leaves us with an ambiguity in the non-perturbative
contribution.
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• The ambiguity can be resolved in two ways:

A resurgent analysis of the Dawson’s function using the Borel
resummation.

Using a geometric intepretation in terms of worldline
instantons.

• For the later, the key is to write the heat trace as a path integral
over closed loops

Tr
[
e∆t
]
≡
∫
x(t)=x(0)

Dxµe−S[x],

where

S [x ] =
1

4

∫ t

0

dτgµν(x)ẋµ(τ)ẋν(τ).
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• In the case of the sphere xµ = (θ, φ) the EOMs are

S =
r2

4t

∫ 1

0
dτ
[
θ̇2 + sin2 θφ̇2

]
,

φ̈ + 2 cot(θ)θ̇φ̇ = 0,

θ̈ − φ̇2 sin(2θ) = 0.

• We can solve them to find the classical solutions and then add
fluctuations around them.
• Solving these we can see that there is a zero mode and multiple
negative modes.
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• In both cases the final, real and unambiguous result is

Tr
[
e

(
∆

S2− 1
4r2

)
t
]

=
2
√
π

(
r2

t

) 3
2
∫
C±

dζ
ζe−ζ

2r2/t

sin ζ
± i

(
πr2

t

) 3
2 ∑

k 6=0

(−1)k+1|k|e−
k2π2r2

t

=
2
√
π

(
r2

t

) 3
2

P.V.

[ ∫
C±

dζ
ζe−ζ

2r2/t

sin ζ

]

• Now we can write the exact expression of the grand potential and
numerically compare it with the convergent small-charge expansion. They
agree to at least eight digits!
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The large-charge expansion of the Wilson–Fisher point is
asymptotic.

In the double-scaling limit Q →∞, N →∞ we control the
perturbative expansion.

We have a geometric intepretation of the non-perturbative
corrections.

We can propose an exact form of the grand potential valid for
any value of q̂.

The fact that non-perturbative corrections are finite-volume
effects motivates us to extend our results to large charge but
finite N.

We conjecture that the large-charge expansion is always
asumptotic with an optimal truncation of N∗ = O(

√
Q),

consistent with the lattice results.
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Thank you!
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