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Introduction

Conformal field theories are characterized by dimensionless numbers.

2Dg
Example: <OQ(y) og(x)>~< ! )

X —y|

D¢ is the conformal dimension of the operator Qg

R labels some set of quantum numbers

Usually no small parameters in the theory, so difficult to compute Dg
Non-perturbative methods: Monte Carlo, bootstrap,....

Perturbative methods: e-expansion, large N, large Q, ...



Large Q Prediction: expansion of the form

Do = C3/2Q3/2 — C1/2Q1/2 + Co + O(l/Ql/z)

C3/2, C1/2 are unkown low energy constants. ¢y is related to the

Casimir energy and can be computed analytically

Hellerman, Orlando, Reffert, Watanabe, JHEP 12 (2015) 71.
Alvarez-Gaume, Loukas, Orlando, Reffert, JHEP 4 (2017) 59.

Q: How well does this approach work in practice?

A: Our goal is to compute Dg using a Monte Carlo method and check!

Challenge: Computing D¢y using Monte Carlo methods
suffers from severe signal to noise ratio problems with

conventional methods for large Q. |
related to the sign problem that

arise due to chemical potential



Traditional O(4) model:
Large Charge Predictions

Traditional model massive broken
O
Z p— /‘[dg] eﬁ Zx,a ng’gx—l—a ?C
7 Conformal Field Theory at the

Wilson-Fisher fixed point

+ Global charges are now labeled with
Q@ = (L. Jr)
*—o since O(4) ~ SU(2) x SU(2).

00 0 O
-O—O0—O0—0O-

3d lattice



Conformal Dimensions D(j., jr)

2D(jL.Jr)
<O)(<jL1jR) O)(/J'LJR)> ~ ( 1 )
X—=Y

Constructing  QUt/#) requires the use of group theory.

—

Start with OW/21/2) = 4

sedy =(1/2,1/2) ® (1/2,1/2)
= (0,0)® (1,0)® (0,1) & (1,1)

O10) = Z 5a5 o PP Generally
e - . S
I O)((JLJR) — P(jLJR) ([¢X]k)

Clebsch-Gordon Coefficients



Large charge predictions:

Leading Sector: J; = Jp = J Large J

. [2)3 2T _
D(,j) = %(Cs/z - 7C1/2 T 0(1/12)) + €0

co = —0.094...
Alvarez-Gaume, Loukas, Orlando, Reffert, JHEP 4 (2017) 59.

Subleading Sector: JL=Jr+1=J Large j
. . ~ ~ A2 .
D(,j—1) = D(.Jj) + A(), A()) = Am O(1/3?)

Alvarez-Gaume, Orlando, Reffert, arXiv:2008.03308.

Interesting prediction
im A() = 0

J—00

)\2 IS one new low energy constant.



Sign Problems:

Computing conformal dimensions for large charges, using
the traditional model suffers from sign problems.

2D(jL . Jr)
o) - (12

At large charges I I

D(jL,jR) — OO

cancellations small
from fluctuations

A new approach is desirable!



Qubit Regularized O(4) model: Loop Gas

From a quantum mechanical perspective, the traditional lattice
model has an infinite dimensional Hilbert space at every lattice site.

Basis states: completeness relation:

Position: |¢, ) / (doy] b )by = |

0, my, mo), > lmy, m) (e my my| =
¢=0,1/2,1,3/2,...

Momentum:

Qubit Regularization:
Lattice models with a finite dimensional Hilbert space
at every lattice site.



Simplest gubit regularization involves a five dimensional Hilbert space:

¢/ =0,m; =0, m = 0), (Monomers)
s, 1) @
Fock vacuum '
(v = 0, jg = 0) sector (0,0)
vector particles
\521/2,m1:::1/2,m2:::1/2> + *
90,9k, ¥), 9[.qr =1/2,—-1/2 (1/2,1/2) (-1/2,-1/2)
O(4) vector + *
(o = 1/2, jr = 1/2) sector (1/2,-1/2)  (-1/2,1/2)

labeled by (97, q%)



Partition Function: Loop Gas

7 = Z {yNm([n.B])
[n,b]

number of
monomers in the
configuration
[n,b]

Nim([n, b])

Can again study using

worm algorithms. llustration of a [n,b] configuration



Correlation Functions

Inserting sources/sinks

Observables

1 p
X = ﬂZ/ dt Tr(e_(ﬂ_t)Har,me_tHaj,,m)
0

Winding Number Susceptibility

Ps = LdE25< (QW)2>




Phase Diagram

broken massive

O
U=0 U. U= o0

Near the critical point we expect

X/L27T = f((U = U)LM")
psL = g((U — Uc)LV")

Traditional Model Results

Pelisetto, Vicari Phys. Repts. (2002)
v =0.749(2),n = 0.0365(10)

Qubit Model Results

0.8 (- p e r ettt

1/v
(U-U )L

U, = 1.655394(3)
v = 0.746(3), n = 0.0353(10)



Conformal Dimensions: Leading sector

To compute the conformal dimensions we need to compute
__ 1\ 2D(LJr)
Giie = Oliir OGrir)) ~ (Z)

separated by L/2

To construct the correct sources and sinks it is helpful to use the
fermionic reperesentation of the qubit regularized model.



Fermionic Representation

Introduce four-Grassmann variables per lattice site:
Un, — =
¢x — 8 ' w — (wl,x' w2,x)
¢2,X
Introduce a 2 x 2 fermion bilinear matrix on each site: (Mx)ap = Yax¥p

The partition function of the model:

7 = di, dip, ] e ¥
[ 1 160,00

Action: S = —Z Tr(M, M,) — g Z Det(M,)

(x,y)



Action is invariant under SU(2) x SU(2) symmetry:

M(x) = R M(x) L', x odd ,
Action:

M(x) = L M(x) RT, x even " T (M(x)M(y)) - UZDetM

(xy)

We can find conformal dimensions through appropriate correlation functions:

C:iL JR

1 — _
V4 / H [dvY, dibax] e Stw) Oivir Ol ir

/1 ik

— (O, O )
JJR IR sink source

Constructing O}, j. and O;

i,.jr requires some group theory!



Let us be a bit more explicit and define

OJ’LJR = O(jL,mL);(jR,mR) OerjR — 6(J'L,mL);(JR,mR)

Single site sources:

Oi/21/2):(1/21/2) = —itvixay  Onja—1/2)(1/2-1/2) = 2xtq 4
i1 xtq o — b2 xty
even site even site

Oupa2pa2-12 = _ Oujz-1/2pa/21/2) =

_’¢2,x¢2,x le,le,X
odd site odd site

Single site sinks:

6(1/2,1/2);(1/2,1/2) — _0(1/2,—1/2);(1/2,—1/2)
6(1/2,1/2);(1/2,—1/2) — 0(1/2,—1/2);(1/2,1/2)



Mapping to worldlines

O(1/2.1/2):(1/2.1/2) O(1/2.1/2):(1/2,—1/2)
Yy Y
X X
O1/2,1/2):(1/2,1/2) O1/2.1/2):(1/2,—1/2)

We can build higher O, m,):(jr.mg) PY Creating more red and

and green world lines sources.



Example:

SRR

-1 2

____________________________________________

We need to spread outthe B G A AL A
individual sources/sinks overa =~ ----- SR IO N R
spatial region on the lattice! - R S ST S S -

_____________________________________

Source is placed on the t=0 slice and the sink att = L / 2 slice



Monte Carlo Algorithm: Leading Sector

L/2

sink

source

00600

0600

L x L box

. 1\ 2D(LJr)
Scallng: CJ'LJR NAJLJR (Z)
I Worm algorithms can
] efficiently compute

CJ'J Aj’j (1)2A(f)

R _ _
l T Gerr A ML

A(j) = D(,j)-D(—1j—1)

From fitting the ratio as a function of L we can extract A(j)



0.01 0.02 0.03 0.04 0.05
1/L

10 ' ' '
0.01 0.02 0.03 0.04 0.05

1/L



The leading sector prediction works very well!
Banerjee, SC, Orlando, Reffert, PRL 123, 051603 (2019)

12

05 1 15 2 25 3 35 4 45 5

j
.. 23 27T _
D(.j) = /2= (C3/2 + ik + 0(1/12)) + co

T

C3/2 = 1068(4), C1/2 — 0083(3) COZ—0094



Conformal Dimensions: Sub-leading sector

Let us now construct sources In the sub-leading sector O(jj) (—1,—1)

Consider the “2)” sources constructed as

R R IR

211 2]
l

(1/2,1/2); (1/2,1/2); .o i (1/2, —1/2): ...+ (1/2,1/2): (1/2,1/2))
2j

We know that

1
Ohiiin = 5 2 O
1

=



There are (2J-1) orthogonal superpositions that lead to (’)(j,j),(j_l,j_l)

| et us denote these as
2j
1 . .
(9".”. . — = e'ZW(ﬁ—l)M/@J) O
GJ).(G—1,j—-1) oY ¢
2 =1

for M = 1,2,...,(2j — 1)

We can similarly construct (2j-1) sinks that transform as 6(j,j),(j—1,j—1)

2J
M 1 : R
O i o = E e (E=UM/(2) O
(U.J),(—1,j-1) /A ¢
2] =1

We can use any combination of C’)%),(j_l,j_l) and @?Jﬂ-,j),(j_l,j_l)

to extract the conformal dimensions D(j,j — 1)



Consider the (2j-1) x (2]-1) matrix of correlation functions

MM [AM / e
M = (00 -1-0OUn-151))  ~ AMM; L-206i=

T

decay at large L

In our calculation we consider the trace of this matrix:




Using the worm algorithm it is easier to compute /'?j = G j-1/C;

which scales as R, ~ Ajj—1 | —2A3) where A(j)=D(,j)—D(,j—1)
Ajj
configurations that configurations that
contribute to C ; contribute to C; ;4

replace with O,
— P 0

\

\

replace with Oy

1
2j(2j — 1)

O 01 — (1 — )

~ 1
Then compute Rj = 2]



Computing R; in a configuration

Replace every red
line at the source
with a green line

In this example 2 =4

~y

Ri =0




0-1: | T T T ]

B o J= :

- e =10 7

i ¢ =20 i

N ]

Results R oo A=03783) -
I A = 0.815(6) ]

_ A = 0.454(5)

0001 | | 1 L1 |

24 32 40 48 64 80 96 128 160192 256
L

- A1 ok
Fits to the form R ~ ZJ L7220 are shown as solid lines
Jo



J Lrange | Aj;_1/A;; | A() | x*/DOF
1]24—128| 5.93(24) |0.815(6) | 1.16
3/2| 32-96 | 2.43(12) |0.746(7) | 1.00
21 32-96 | 2.15(14) |0.723(9)| 0.52
5/2| 32—-96 | 1.75(08) |0.685(6) | 1.28
Results of fit to the form 3| 32-96 | 1.54(08) |0.659(7)| 0.93
7/2| 32—-96 | 1.35(05) |0.633(5)| 0.38
R’;_ N Aj,j—l L—2A(j) 41 32—-96 | 1.18(04) |[0.607(4) | 0.40
J Ajj 9/2 |40 —160 | 1.05(04) |0.586(5)| 0.95
| 5140 —160 | 0.94(04) |0.566(5)| 0.90
at various values of j. 11/2 | 48 —160 | 0.88(03) | 0.553(4) | 0.86
6|48 —160 | 0.83(03) |0.541(5)| 1.40
13/2 | 64— 160 | 0.75(04) |0.525(7) | 1.11
7164—160| 0.71(03) |0.513(5)| 1.18
15/2 | 64 — 160 | 0.69(04) | 0.506(6) | 1.45
8|64 —160| 0.60(03) |0.486(5)| 0.77
17/2 | 64 —160| 0.61(03) |0.484(5)| 0.83
9|80—160| 0.54(04) |0.467(8)| 0.98
19/2 | 80 — 160 | 0.53(03) | 0.463(7) | 0.47
10 | 80 — 160 | 0.49(02) | 0.454(5) | 0.62
latest result— 20|96 —256 | 0.32(01) |0.378(3)| 0.91




to be determined

Large Charge Predictions /
~ A2 .
A(j) = To | T -0(1/%/7)
=0

— 0.208(8) + 0.799(19)>°

—  1.539(10)j° - 1.268(50) ' °

)




Large Charge Predictions

A() = & + 2 + O(1/7)

— 0.208(8) + 0.799(19) j°°

— 1.539(10) | *° - 1.268(50) | '°

J




Large Charge Predictions

~ \° .
A() = € + =73 O(1/;°)

i — 0.208(8) + 0.799(19)|°° ]
— 1.539(10) | *° - 1.268(50) | °
0.6 — 0.197(6) + 0.825(14)[°°
S i
04+




Large Charge Predictions

~ A2 .
A(j) =& A T -O0(1/%/2)

Prediction: ¢ = 0 while our result &g = 0.197(6)

We obtain A% = 0.825(14)

We cannot of course rule out the possibility that the true large |
predictions only begin for much larger values of | than we are
currently exploring.



Conclusions

The recent proposal of Q-expansion for CFTs continues to be a
promising approach.

In the sub-leading sector, the Q-expansion in the O(4) model
seems to suggest the presence of an extra term.

Is the large Q expansion valid only for much larger
values of Q in some sectors?

To study the O(4) model we used a drastically simpler formulation of
the theory called a “Qubit regularization.”

These are new ways of studying CFTs and QFTs.



