How Multidisciplinarity can Advance Lifescience Understanding

Combining Optics, Image Processing, Computational Simulation to Aid Biological Understanding

John Girkin

Department of Physics University of Durham, UK

j.m.girkin@durham.ac.uk

- Durham, 3rd oldest English University
- More than just a set for Harry Potter!
- Small and research intensive
- Members from 160 countries
- Strength in multidisciplinary approach

Outline

- Philosophy
- Mechanotransduction by Geometric Modification
- Summary

Multidisciplinarity

- Get the original question right
- Open discussion accepting lack of knowledge- No Stupid questions
- "Transfer" technology/methods
- Choose the right tool for the task in hand
- Don't over complicate!

Durham University

© University of Durham 2023

Centre for Ådvanced Instrumentation

Biology and the Physical Sciences

• The Philosophical Approach

The technology/methodology should help the Biology

CfÅl Centre for Ådvanced Instrumentation

Biology and the Physical Sciences

Multi-scale considerations

 1×10^{27} in scale

Combining micro-optics, image analysis and computer simulation to understand vascular endothelia sensing

The Endothelium

Monolayer of cells

Innermost layer in all vasculature

Fully connected over whole body

10x more endothelial cells in you than neurones

Controls almost everything...

- Regulates blood vessel formation (angiogenesis)
- Prevents blood clotting
- Regulates vascular permeability
- Determines the extent of smooth muscle proliferation.
- Controls arterial tone (regulate blood flow)
- All without involving the nervous system
 - How?

The Circulatory, Respiratory, and Digestive Systems http://www.uic.edu/classes/bios/bios100/lecturesf04am/lect20.htm

Introduction to IP₃R mediated Calcium waves

ER is a Ca²⁺ reservoir – $[Ca]_{ER} \sim$ 500µM Cytoslic Ca²⁺ strongly buffered $[Ca]_{Cyt} \sim$ 70nM $[B]_{Cyt} \sim$ 1mM

- Locally elevated Ca²⁺ or IP3 opens an IP3R
 - Local source of cytosolic Ca^{2+} with current J_0
 - First IP3R often opened by IP3 from gap junction
 - "Diffusing" Ca²⁺ wavefront triggers a cascade of IP3R openings

Endothelium

CfÅl Centre for Ådvanced Instrumentation

Visualising the Endothelium from inside intact arteries

- Desire
 - camera in a pressurised artery
 - Cellular Resolution on curved surface
 - wide field of view and high speed
 - Operating in fluorescence

The Technology

The Technology

© University of Durham 2023

University

Centre for Ådvanced Instrumentation

In Use

ACh Dose Response

Large field of view (~200 endothelial cells)

"Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium, C. Wilson, C. D. Saunter, J. M. Girkin, and J. G. McCarron, "FASEB J., vol. 30, pp. 1–14, 2016.

urham

University

CfÅl Centre for Ådvanced Instrumentation

Data Analysis:- Time Synchronisation

Align peak rise of each signal

CfÅl Centre for Ådvanced Instrumentation

ACh Dose Response: More cells respond & magnitude of response increases

 Ca^{2+} rise originated from an IP₃-sensitive Ca^{2+} store as signal went when blocked, caffeine no effect not RyR irham University

© University of Durham 2023

Centre for Ådvanced Instrumentation

Increased pressure decreases activation of endothelial cells

60 mmHg

"Pressure-dependent regulation of Ca 2+ signaling in the vascular endothelium," C. Wilson, C. D. Saunter, J. M. Girkin, and J. G. McCarron, J. Physiol., vol. 593, no. 24, pp. 5231–5253, 2015.

"Pressure-dependent regulation of Ca 2+ signaling in the vascular endothelium," C. Wilson, C. D. Saunter, J. M. Girkin, and J. G. McCarron, J. Physiol., vol. 593, no. 24, pp. 5231–5253, 2015.

Data Analysis: Signally via Spacing of Receptors?

- Complex but repeatable patterns seen
- Calcium computing?

Simple Signal Pathway

Ring Oscillator = Clock or Memory?

How does the cell sense pressure?

- Calcium release from ER to cytosol by IP₃R is reduced at higher lumen pressures
- The IP₃R receptor...
 - Is tiny tetramer of ~300 kDa molecules
 - Pressure differential small
 - Thermal noise large
 - Is deeply embedded within a cell
 - Has no known mechano-sensor

Working hypothesis

- Artery expands with pressure
- Cells stretched in width
- Conservation of volume
 - Cell must thin in radial direction
- Thin cells limit Ca²⁺ diffusion within IP₃R microdomains
 - Increased [Ca²⁺]
 - Decreased conc. gradient from store
 - Decreased injection current

Lawton, P. F. *et al.* VasoTracker, a Low-Cost and Open Source Pressure Myograph System for Vascular Physiology. *Front. Physiol.* 10, 99 (2019). **CfÅl** Centre for Ådvanced Instrumentation

Computer Modelling

- Diffusion model of Ca²⁺ and buffer
- Used literature figures
- Solved by simulation of coupled equations
- Model single IP₃R and micro-domain cluster
- Change height of ER to maintain constant volume

$$c(r) = c_{\infty} + \frac{J_{Ca}}{2\pi D_{ca}} \frac{e^{-r/\lambda}}{r} \qquad \frac{\partial C_s}{\partial t} = D_s \nabla^2 C_s + \phi_s + J_s$$

$$J_{Ca,cyt} = J_{leakage,er} + J_{SERCO,er} + J_{IP^3R,er} + J_{leakage,pm}$$

$$\phi_{Ca,cyt} = -K_{on}.C_{Ca,cyt}C_{B,cyt} + K_{off}C_{CaB,cyt}$$

Individual vs clustered IP₃R

© University of Durham 2023

 \wedge

Modelling Results

© University of Durham 2023

 \wedge

Centre for Ådvanced Instrumentation

[Ca2+] at a cluster under thinning

 \wedge

Fixed Tissue Imaging: Supporting Evidence

"Pressure-dependent regulation of Ca 2+ signaling in the vascular endothelium, C. Wilson, C. D. Saunter, J. M. Girkin, and J. G. McCarron, "J. Physiol., vol. 593, no. 24, pp. 5231–5253, 2015.

© University of Durham 2023

Centre for Ådvanced Instrumentation

Summary

- Now looking at signally through to smooth muscle cells
- Remember your core science skills
- Ask questions and discuss openly
- Vascular Pressure Sensing possible without direct sensors
- Simple Models often work

Lawton, P. F. *et al.* Multi-plane remote refocusing epifluorescence microscopy to image dynamic Ca 2 + events. *Biomed. Opt. Express* 10, 5611–5624 (2019).

CfÅl Centre for Ådvanced Instrumentation

- University of Strathclyde
 - Dr Calum Wilson, Prof John McCarron, Dr Charlotte Buckley

- University of Durham
 - Dr Chris Saunter, Dr Penny Lawton

Supported by wellcometrust

Thank You for Your Attention

