

Interdisciplinary Science Conference in Okinawa — Physics and Mathematics meet Medical Science —

> ISCO 2023 @ OIST Mar. 1, 2023

New Developments in Muon-Catalyzed Fusion Research by Precise X-ray Spectroscopy of Muonic Molecules

Shinji OKADA (Chubu Univ.)

d

Contents

- 1. What's Muon-Catalyzed Fusion (µCF)?
- 2. New developments on μ CF research
 - (a) µCF target development
 - (b) Advances in our understanding of μCF
 - elementary processes
- 3. Summary

1. What's muon-catalyzed fusion?

Muonic atom

What is muon?

- A member of the electron family
- ~200 times heavier than the mass of an electron
- short life time (~2.2 µsec)
- can be made into a beam using a particle accelerator

What is a muonic atom?

- When a negative-charged muon is stopped in a material, it can replace an electron to form a muonic atom
- Muons are 200 times heavier than electrons, so they form very compact atoms with a radius of 1/200 compared to ordinary atoms.

⁽inversely proportional to the muon reduced mass)

Scaled image

Scaled image

Muonic molecule

Compared to the reach of nuclear force (a few fm), it becomes small enough to allow nuclear reactions to occur within the molecule.

Fusion

Muon-Catalyzed Fusion (µCF)

Brief history of µCF research

- 1947 F.C. Frank : Hypothesis of the µCF cyclic reaction
- 1957 L.W. Alvarez : First observation of the µCF cyclic reaction
- 1967 E.A. Vesman : Theory of Resonant Molecule Formation
- 1980 2000 Significant progresses in both experimental and theoretical studies
 - LAMPF (US, Los Alamos)
 - SIN, PSI (Swiss, Villigen)
 - TRIUMF (Canada, Vancouver)
 - KEK (Japan, Tsukuba)
 - RIKEN-RAL (UK, Chilton)
 - → found that the maximum number of μ CF cycles is about 150
 - ➡ Since it takes about 5 GeV of energy to make one muon, the scientific breakeven can be exceeded if more than 300 cycles/µ (~5000 MeV / 17.6 MeV) are performed.
 - The bottlenecks are the molecular production rate and the αsticking problem, and µCF research has not progressed since 2000.
- 2016 Reexamination has been initiated by Y. Kino (Tohoku Univ) and M. Sato (Chubu Univ).

 µCF reaction in a bubble chamber observed by Alvarez et al.
→ "AB", "CD" followed by µCF, and Muons turn into electrons and neutrinos at "E".

Since 2016

Two research funding programs :

- ImPACT (Impulsing Paradigm Change through Disruptive Technologies Program) Substantial reduction and recycling of high-level radioactive waste through nuclear transmutation (PM : Reiko Fujita)
 - Theoretical calculations of elementary processes of muon-catalyzed fusion reactions in high-temperature plasmas (Yasushi KINO)
 - Application of fusion neutrons to the separation and transmutation of LLFPs (Motoyasu SATO)

(2) Grant-in-Aid for Scientific Research on Innovative Areas (2018-2022)

Toward new frontiers : Encounter and synergy of state-of-the-art astronomical detectors and exotic quantum beams (PI : **Tadayuki Takahashi**)

 Program B02 : Basic research of <u>in-flight muon catalyzed fusion</u> in the Mach shock wave interference region (Yasushi KINO)

New elementary process

$\Rightarrow \mu CF$ research is gaining momentum, again!

2. New developments on µCF research

New developments of µCF

New development (1)

µCF target development

Requirement of target for µCF :

Mixed deuterium and tritium targets
High density (for efficient μ⁻ rest in the target)
Removal of reaction products (⁴He)

Traditionally, solid and liquid targets have been used for μCF

4 Proposed a new concept of the "circulating" target

New development (2)

new µCF process (IFµCF)

Muon-Catalyzed Fusion (µCF)

µ atomic & molecular process

How µ molecules are created ?

If the muonic atom collide "**gently**" to the normal molecule, the excess energy of ddµ molecule formation is passed to the rovibrational excitation energy of D₂ molecule.

 \Rightarrow Resonant generation (Vesman mechanism)

Molecule in molecule !

Key point of the new µCF process

Dissociation of excited molecules

spectroscopy

Inflight µCF study

µCF cycle considering "excited molecules"

28

 \rightarrow So it is important to study the mechanism to enhance the IFµCF process.

Importance of dtµ* was demonstrated

⇒ Aiming for direct experimental verification

Strategy for IFµCF Demonstration Experiment

High Precision Spectroscopy of Muonic Molecules

Theory : Few-body calculations simultaneously solving for the motion of nuclei and heavy negatively charged particles

Experimental : High energy resolution in X-ray measurements in muon beams

Scientific Research on Innovative Areas (2018-2022)

Encounter and Synergy of

State-of-the-art Astronomical and Detectors

Exotic Quantum Beams

We brought the detector to the muon beam experiment !

Innovative Spectroscopic Techniques

High Precision Spectroscopy of Muonic Molecules

2019MS01 : "µ molecule" experiment

Mar 9 - 19, **2022**

Feb 5 - 11, **2023**

Experiment with gas D₂

March, **2022**

Experiment with gas D₂

March, **2022**

- ✓ Precise energy calib. in ~2 keV
- ✓ Clear Lyman series dµ X-rays
- ✓ No significant signal of µ molecules
- ✓ "Vesman mechanism" requires that µ atoms collide "gently" to the normal molecule.
- expecting that the Vesman mechanism did not work well in the low-density gas environment due to insufficient thermalization
- Moreover, the present TES is known to have a tail component in the detector response function.

Next :

3.5

- ➡ Low tail TES
- ➡ Solid D₂ target

New TES : Less tail component

Experiment with solid D₂ (2023)

Summary

- ✓ Muon-catalyzed fusion, µCF, research is entering a new phase
- ✓ Concept of circulating gas target for µCF is ready for practical use
- ✓ A new elementary process of µCF was proposed and indirect evidence was obtained.
- ✓ The first direct evidence for the existence of "resonant Matryoshka molecules" (= intramolecular molecules) is provided.
 - ➡ opens a complex and diverse black box leading to µCF
 - marks the beginning of a new quantum few-body study in the field of "exotic molecules".

Collaborators

many researchers from different fields

M. Katsuragawa, S. Takeda, T. Takahashi, P. Caradonna

大阪大学

T. Azuma. K. Ishida, T. Isobe, Y. Ueno

S. Watanabe

S. Kanda, N. Kawamura, Y. Miyake, H. Natori, S. Nagatani, K. Shimomura, P. Strasser, S. Takeshita, I. Umegaki, M. Tampo

P. Indelicato, N. Paul

D. A. Bennett, W. B. Doriese, M. S. Durkin, J. W. Fowler, J. D. Gard, G. C. Hilton, K. M. Morgan, G. C. O'Neil, C. D. Reintsema, D. R. Schmidt, D. S. Swetz, J. N. Ullom

T. Osawa, T. Hashimoto

T. Saito, Y. Ueno

K. Kubo

Y. Kino, T. Nakamura, K. Okutsu, T. Yamashita

PARC

lbaraki Universitv

R. Hayakawa, Y. Ichinohe, S. Yamada,

with graduate students.

A. Taniguchi