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Quantum Hall effect

2.1.3 Aside: solid-state experimental observables

Note that in a solid-state experiment, it is easier to measure the conductance
and resistance, rather than the conductivity and resistivity. In general, these
quantities are closely related; the resistance, for example, depends on the re-
sistivity through R = (L/A)⇢ where L is the length of the sample and A is
the cross-section. As the cross-section scales as L

d�1 in d-dimensions, we see
from this simple relation that R ⇠ ⇢L

2�d. Consequently, in d = 2, we have
the special case that the resistance and resistivity are (almost) interchangeable.
In our case, for a sample of length L along y, the transverse Hall resistance is
related to the transverse resistivity as:

Rxy =
Vy

Ix

=
LEy

Ljx

= �⇢xy (11)

and so they are identical (up to a minus sign). This point is crucial as it means
that experimental measurements of the Hall resistance do not depend on the
geometrical dimensions of the sample, and so are experimentally “universal”.

2.2 Phenomenology of the integer quantum Hall e↵ect

The integer quantum Hall e↵ect (IQHE) was experimentally discovered by von
Klitzing, Dorda and Pepper in 1980, followed by the fractional quantum Hall
e↵ect (FQHE) a couple of years later in 1982 by Tsui, Stormer and Gossard.
These were quickly recognised as hugely important breakthroughs with the 1985
Nobel Prize going to von Klitzing for the IQHE, and the 1998 Nobel Prize going
to Laughlin, Stormer and Tsui for the FQHE.

In this course, our focus will be on the IQHE, which can be understood
in terms of single-particle physics, but we shall make a quick overview of the
more complicated and richer FQHE later on. Note that our discussion will be
primarily from a solid-state perspective, as these e↵ects were first discovered

(a) (b)

Figure 2: (a) Typical measurement of the integer quantum Hall e↵ect (taken
from Schurr et al. IEEE Trans. Instrum. Meas. 53 8269, (2004)). N.B. In
the following, we use the symbol ⌫ to label the plateaus instead of i. (b) Mea-
surement of the fractional quantum Hall e↵ect, as published in J.P. Eisenstein
and H.L. Stormer, Science, 1510, (1990). Here, the dashed diagonal line is the
classical Hall resistance and the solid diagonal curve is the experimental Hall
resistance.
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In 1980, it was found that the Hall resistivity under a high magnetic field shows unexpected plateau  
 - Integer Quantum Hall Effect- 

Main goal of my talk today are twofold: 
• To discuss that this effect is related to “topology” of the “wave function” 
• To show that this effect is more general than just in semiconductor electron physics

<latexit sha1_base64="0A+1MTZBMBSFNXxL7kqKV+DHj9g=">AAAB6HicdVDLTgJBEJzFF+IL9ehlIjHxtJlFQbgRvXiERMAENmR26IWR2UdmZk3Ihi/w4kFjvPpJ3vwbZwETNVpJJ5Wq7nR3ebHgShPyYeVWVtfWN/Kbha3tnd294v5BR0WJZNBmkYjkrUcVCB5CW3Mt4DaWQANPQNebXGV+9x6k4lF4o6cxuAEdhdznjGojtWBQLBGbVCt1UsfErhCnNieEVGvlM+wYkqGElmgOiu/9YcSSAELNBFWq55BYuymVmjMBs0I/URBTNqEj6Bka0gCUm84PneETowyxH0lTocZz9ftESgOlpoFnOgOqx+q3l4l/eb1E+zU35WGcaAjZYpGfCKwjnH2Nh1wC02JqCGWSm1sxG1NJmTbZFEwIX5/i/0mnbDtVu9I6LzUul3Hk0RE6RqfIQReoga5RE7URQ4Ae0BN6tu6sR+vFel205qzlzCH6AevtEzOvjTo=</latexit>e



Landau level, topology, and bulk-edge correspondence

Possible energy of an electron in a magnetic field takes only discrete values called Landau levels

Energy is an eigenvalue of an operator called Hamiltonian 
We can also consider its eigenvectors, which represent the 
corresponding quantum states

Eigenvectors represented as arrows

Eigenvectors can form a nontrivial shape in momentum space 
How many times the eigenvectors rotate is an integer called 
the Chern number, and this is 1 for Landau levels

Chern number (calculated in momentum space) turns out to 
be equal to the number of edge-localized state in real space 

 - bulk-edge correspondence - 

Hall resistivity is inversely proportional to 
the number of edge-localized modes

Topological property
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Topological photonics

Eigenvectors in momentum space rotate also in other systems

Analogs of quantum-Hall-effect edge states in photonic crystals
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Photonic crystals built with time-reversal-symmetry-breaking Faraday-effect media can exhibit chiral edge
modes that propagate unidirectionally along boundaries across which the Faraday axis reverses. These modes
are precise analogs of the electronic edge states of quantum-Hall-effect !QHE" systems, and are also immune
to backscattering and localization by disorder. The Berry curvature of the photonic bands plays a role analo-
gous to that of the magnetic field in the QHE. Explicit calculations demonstrating the existence of such
unidirectionally propagating photonic edge states are presented.

DOI: 10.1103/PhysRevA.78.033834 PACS number!s": 42.70.Qs, 03.65.Vf

I. INTRODUCTION

The control of the flow of light using photonic-band-gap
!PBG" materials has received considerable attention over the
past decade #1$. Moreover, the potential for using artificially
structured metamaterials, such as the recently discovered
left-handed media #2$, has shown considerable technological
promise. In the past, significant progress has been achieved
in the field of photonics by making use of analogies with
electronic systems. For instance, the idea of a PBG material,
a system with a spatially varying and periodic dielectric
function, was motivated by the well-known physics of elec-
tronic Bloch states; the dielectric scattering of light in peri-
odic media presents the same formal solutions as those for
the scattering of electrons in periodic potentials.

Previous photonic-band-structure calculations have fo-
cused on the frequency dispersion of the photon bands; it has
been usually been assumed that a knowledge of the spectrum
alone represents a complete understanding of the dynamics
of the system. A primary goal of such calculations has been
the quest for a PBG material with a complete band gap
throughout the Brillouin zone in some frequency range,
which would prevent the transmission of light with fre-
quency in the range of the band gap. Both two- and three-
dimensional band structures possessing these properties have
now been discovered #3$.

Recently, however, in the study of electronic systems, it
has become apparent that, even in the absence of interaction
effects, the dispersion relations of the energy bands do not
fully characterize the semiclassical dynamics of wave pack-
ets, unless both spatial-inversion symmetry and time-reversal
symmetry are unbroken #4$. The additional information,
which is not obtainable from knowledge of the energy bands
!n!k" alone, is the variation of the Berry curvature #5$
Fn

ab!k"=!abc"nc!k", which is an antisymmetric tensor in k
space, where "n!k" is analogous to a magnetic field !flux
density" in k space. The Berry curvature in k space is related
to the Berry phase #6$ in the same way that the Bohm-

Aharonov phase of an electronic wave packet is related to the
magnetic flux density in real space.

While the uniform propagation of wave packets in per-
fectly translationally invariant systems does not involve the
Berry curvature, the semiclassical description of the accel-
eration of wave packets in media with spatial inhomogeneity
of length scales large compared to the underlying lattice
spacing is incomplete if it is not taken into account. Recently,
Onoda et al. #7$ have pointed out the role of Berry curvature
in photonic crystals without inversion symmetry; while these
authors characterize this as a “Hall effect of light,” the Hall
effect in electronic systems is associated with broken time-
reversal symmetry rather than, broken spatial-inversion sym-
metry, and we have recently discussed #8$ some of the effects
at first sight surprising, that broken time-reversal symmetry
could produce in photonic systems.

In the presence of nonvanishing Berry curvature, the
usual semiclassical expression for the group velocity of the
wave packet is supplemented by an additional anomalous
contribution proportional to its acceleration and the local
Berry curvature of the Bloch band. !The semiclassical treat-
ment of electron dynamics becomes ray optics in the photo-
nic context." This anomalous velocity has played an impor-
tant role in understanding recent experiments on the
anomalous Hall effect of ferromagnets #9$, for example.

Perhaps the most remarkable among the “exotic” effects
associated with Berry curvature, however, is the quantum
Hall effect #10$, which has been the focus of intensive ex-
perimental and theoretical study in condensed matter physics
for over two decades. The physics of the quantum Hall re-
gime and its connection with Berry curvature phenomena is
now well understood. The possibility of transcribing some of
the main features of the quantum Hall effect to photonic
systems, which brings into play new possibilities in photon-
ics, is the topic of this paper. Specifically, we shall concern
ourselves with analogs of “chiral” !unidirectional" quantum
Hall edge states in photonic systems with broken time-
reversal symmetry.

The quantum Hall effect is usually associated with two-
dimensional electron systems in semiconductor heterojunc-
tions in strong applied magnetic fields. By treating the plane
of the heterojunction as a featureless two-dimensional !2D"*sraghu@stanford.edu
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
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patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
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strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.

a

b

c

A

A

B

l

a

Ez

0Negative Positive

Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Topological Photonics:  
Topological energy eigenstates in photonics 
systems



Topological photonics in synthetic dimensions

One can use non-spatial degrees of freedom as dimensions: Synthetic dimensions
We can use resonant modes of a resonator as a dimension and realize topological lattice models

2

≡

(a)

(b) (c)

FIG. 1. Dynamically modulated ring cavity and its band
structure in the synthetic frequency dimension. (a) A sinu-
soidal signal VM modulates the index of a part of the ring
(left) at the mode spacing ⌦R, creating coupling J between
the di↵erent frequency modes (right). EOM: electro-optic
phase modulator. (b) Band structure of the nearest-neighbor
coupled 1D tight-binding model, ✏k = 2J cos k⌦. (c) Theoret-
ical time-resolved steady-state response of the ring (Eq. (13))
for a cavity loss rate 2� = J/5. The time t plays the role of
the Bloch quasimomentum k.

ring respectively, and c is the speed of light. In a static
ring, these modes are uncoupled from each other. One
can introduce coupling between the modes by incorpo-
rating a phase modulator in the ring [Fig. 1(a)]. Here
we consider on-resonance coupling where the modulation
signal’s periodicity TM = 2⇡/⌦M matches the roundtrip
time of the ring, TR = 2⇡/⌦R.

The equations of motion for the amplitude of them�th
mode am for such a ring modulated at frequencies com-
mensurate with its FSR can be written as (see Supple-
mentary Information Section A),

ȧm(t) = im⌦ am + i

X

n

Jmn(t) an(t) (1)

where ȧm ⌘ dam/dt, ⌦R = ⌦M = ⌦ and T = 2⇡/⌦.
Jmn(t) = Jmn(t + T ) is the coupling introduced by the
periodic modulation signal VM (t). Througout this pa-
per, all frequencies are measured against the resonance
frequency of the 0-th order mode. In the Supplemen-
tary Information we justify that Jmn(t) depends only on
n �m and derive the explicit relation between Jn�m(t)
and VM (t). By going to a rotating frame defined by
bm = ame

�im⌦t, the equations of motion become,

iḃm = �
X

n

Jn�m(t) bne
i(n�m)⌦t (2)

Defining a column vector |bi ⌘
(. . . , bm�1, bm, bm+1, . . .)T =

P
m bm|mi, where |mi

is the m-th unmodulated cavity mode, Eq. (2) can be
written as a matrix equation

i |ḃi = H(t) |bi. (3)

Here H(t) is the Hamiltonian with the matrix elements,
Hmn(t) = hm|H(t)|ni = �Jn�m(t) ei(n�m)⌦t

.

This Hamiltonian H(t) has two symmetries. The first
is the modal translational symmetry along the frequency
axis between the equally spaced modes, since the matrix
elementHmn depends only onm�n. This symmetry per-
mits the definition of a conserved Bloch quasimomentum
k in the associated reciprocal space. Since the recipro-
cal space here is conjugate to the frequency dimension,
we expect it to be identified with time. We will formally
show that this is indeed the case below. The second sym-
metry is the time-translation symmetry H(t) = H(t+T ).
This leads to Floquet bands with quasienergies ✏k that
are defined in the interval [�⌦/2,⌦/2]. The relationship
between the quasienergy ✏k and the quasimomemtum k

is the band structure.
Define the Bloch modes |ki =

P
m e

�im⌦k|mi.
The state vector |bi can be written as |bi =

(⌦/2⇡)
R ⇡/⌦
�⇡/⌦ dk b̃k|ki. Eq. (3) then reads,

i
˙̃
bk = hk|H(t)|bi = Hk(t) b̃k

Hk(t) = �
X

s

Js(t) e
is⌦t�is⌦k; s 2 Z (4)

where we have used hk|H(t)|k0i = �(k � k
0)Hk(t). H(t)

is already diagonal in k-space at each instant t due to
its modal translational symmetry. Since Hk(t) is also
time-periodic, the Floquet quasienergies ✏k,n and eigen-
functions  kn(t) are well-defined and satisfy

(Hk(t)� i@t) kn(t) = ✏k,n  kn(t), (5)

with  kn(t) =  kn(t+ T ), and ✏k,n = ✏k + n⌦.
The above discussion was for a closed system. Next,

we turn to an open system, where the ring is coupled
to through- and drop-port waveguides [Fig. 2(a)], and
show how its band structure can be read-out directly by
time-resolved transmission measurements. Starting from
Eq. (1), assuming all modes couple to both waveguides
with equal rates �, and by going to the rotating frame,
the input-output equations are,

ḃm =� �bm + i

X

s

Js(t) e
is⌦t

bm+s + i
p
�e

�i(!+m⌦)t
sin

(6a)

sout(t) = i
p
�

X

m

bm(t) eim⌦t = i
p
� b̃k(t)

���
k=t

(6b)

where sin is the amplitude of the monochromatic input
wave at frequency ! [Fig. 2(a)]. The last step in Eq. (6b)
follows from the definition of b̃k =

P
m bme

im⌦k. It ex-
plicitly shows that the quasimomentum k is mapped to
the time t in the cavity output field sout. By defining
a column vector |sini = sin

P
m e

�im⌦t|mi, we can write
Eq. (6a) more compactly as:

i@t|bi = (�i� +H(t))|bi � p
�e

�i!t|sini (7)

TO, Price, Goldman, Zilberberg, & Carusotto, PRA 93, 043827 (2016) 
Yuan, Shi, & Fan, Opt. Lett. 41, 741 (2016)

Theory:

Dutt, Minkov, Lin, Yuan, Miller, & Fan, Nature Comm. 10, 3122 (2019)First experiment:

First experiment in silicon ring resonator: 
Balčytis, TO, Ota, Iwamoto, Maeda, & Baba, Science Advances 8, eabk0468 (2022)

periodic table of topological phases for 
non-interacting fermions3,121,122, it is known 
that there should be a variety of topological 
phases above three dimensions. A first 
example of this is the 4D quantum Hall 
effect123–125, corresponding to a generalization 
of the famous 2D quantum Hall effect. 
For the simplest case of a non-degenerate 
band, the 4D quantum Hall band structure 
is topologically characterized by an integer 
invariant called the second Chern number, 
C2, as opposed to the first Chern number,  
C1, for the 2D quantum Hall systems, 
mentioned above. C1 leads to a Hall current 
that depends linearly on the applied electric  
field: C∕j e h ε E= ( 2 )μ μν

ν
2

1 , where ε μν is the 
3D Levi-Civita symbol, which is totally 
antisymmetric with respect to its indices.  
On the contrary, C2 leads to a nonlinear 
response C∕j e h ε E B= ( 2 )μ μνρσ

ν ρσ
3 2

2 , where 
ε μνρσ is the 4D Levi-Civita symbol. Here, 
Eν = ∂0Aν − ∂νA0 and Bρσ = ∂ρAσ − ∂σAρ are  
the 4D electromagnetic fields applied to the 
system, with A being the 4D electromagnetic 
gauge potential126. Very recently, the  
first signatures of this 4D quantum Hall 
effect have been experimentally observed 
through a mathematical mapping to  
2D topological pumps in ultracold atomic 
gases127 and photonics128. Going further, 
synthetic dimensions can provide means  
to realize a fully 4D physical set-up and to  
directly observe the 4D quantum Hall 
response in both cold atoms126,129 and 
photonics80. Finally, these developments  
have also stimulated studies of higher and 
more exotic topological states such as  
5D Weyl semimetals130 and 6D quantum 
Hall effects131,132.

Conclusions
Synthetic dimensions provide a powerful 
way to explore topological matter in cold 
atoms and photonics, opening up many 
interesting prospects for future research.  

As summarized in TABLE 1, the idea of 
synthetic dimensions has already led to a 
wealth of proposals and experiments, which 
each have their own distinct characteristics. 
An important research direction to take 
will be to understand the advantages and 
limitations of each set-up and to work on 
their improvement. For example, most of 
the known schemes have exotic interparticle 
interactions and only discrete degrees of 
freedom along the synthetic direction, which 
hinders the simulation of models with local 
interactions or with continuous dimensions; 
in the future, it will be interesting to find new 
approaches that circumvent or exploit these 
features. In this Perspective, we have also 
focused on synthetic dimensions in atomic, 
molecular and optical systems, but similar 
physics may arise in other contexts, such 
as, for example, in superconducting phase 
qudits, in which the d anharmonic oscillator 
levels can be controllably coupled together133. 
Going forward, it will be important 
to develop and explore such broader 
connections, as the idea of topological matter 
in synthetic dimensions is very general, and 
the extension of this approach to other areas 
of physics is much awaited.
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Fig. 4 | Prospects of synthetic dimensions. a | Schematic illustration of a 1D chain of optical resona-
tors, simulating a 2D topological lattice. The edge mode travelling along the frequency axis acts as a 
frequency converter, whereas the edge mode travelling along the real axis acts as an optical isolator. 
b | Schematic image of a 4D lattice made of three real dimensions and one synthetic dimension, which 
can be used to realize the 4D quantum Hall effect.

 

 

recently the first experimental realization of a synthetic frequency dimension was demonstrated using a macroscale 
optical fiber loop [20] and later a synthetic Hall ladder was realized by harnessing the direction of propagation 
within a ring as an additional dimension [21]. However, to enable robust platforms for researching complex 
multidimensional effects and creating practical optical devices, it is vital to miniaturize and transfer photonic 
realizations of synthetic dimensions into a monolithically integrated format. Early efforts towards this goal 
involved modelling thin-film lithium niobate electro-optic frequency combs as a multi-dimensional tight-binding 
lattice [22]. However, utilizing a more scalable silicon photonic chip platform would provide a considerable 
advancement, as it on one hand would allow photonics with synthetic dimensions to benefit from the mature and 
sophisticated CMOS commercial fabrication toolbox, and on the other, create the means for multi-dimensional 
topological phenomena to be introduced into novel device applications. 
We report the realization of a synthetic frequency dimension on a Si CMOS platform by employing a custom 
dynamically modulated integrated ring resonator cavity design. By driving the resonator at its free-spectral range 
(FSR) rate of ΩR = 20.4 GHz a frequency lattice spanning a 280 GHz bandwidth was established and sideband 
intensity enhancement was observed. The equidistant ring modes and periodic modulation of the cavity 
respectively represent lattice sites and their coupling mechanism, hence could be mapped to a 1D tight-binding 
model. By detecting the time resolved transmittance during modulation at the FSR rate we were able to 
experimentally measure the band structure involving a synthetic frequency dimension in an integrated photonic 
device for the first time. Furthermore, we demonstrate an ability to engineer inter-site couplings and induce non-
reciprocity through photonic gauge potentials. By respectively employing FSR-detuned modulation frequencies 
or multiple modulation signals we were able to attain time-resolved demonstrations of band structures indicative 
of behaviors analogous to effective electric and magnetic field effects for photons. We suggest that such CMOS 
process fabricated ring resonator devices – supporting an extensive frequency dimension with versatile and 
reconfigurable coupling mechanisms, as well as two synthetic forces – can act as robust building blocks for 
scalable integrated circuits with nontrivial topology, which are promising for both answering fundamental 
questions in physics and realizing novel device prototypes.  

Results 

Device design. Our approach to produce a lattice of coupled states along a synthetic frequency dimension involves 
the use of a ring resonator [20, 22]. Provided the waveguiding medium comprising the cavity exhibits near-zero 

 
Fig. 1 (a) Schematic of the custom modulator-equipped ring resonator cavity design for the implementation of a 
synthetic frequency dimension. (b) Detailed drop-port transmittance spectrum in the λ = 1550 nm region spanning 
a 12 FSR interval with an approximate 20.4 GHz mode spacing, highlighted in inset (c) survey spectrum of the 
device throughout the telecommunication C-band. 

Science Advances                                               Manuscript Template                                                                           Page 17 of 28 
 

 585 
Fig. 5.  Experimental measurement of non-reciprocal band structures. Band-structure 586 

engineering using nearest-neighbor coupling (20.4 GHz), long-range hopping 587 
(40.8 GHz) and a synthetic magnetic field (ĳ) when coupling strength ratio J2/J1 §�588 
0.6 is maintained constant. Variation of 20.4 GHz modulation phase delay ĳ induces 589 
gradual band structure changes. The phase delay increases from left to right. 590 
Superimposed blue and red plots are the Lorentzian center frequency and 591 
İk = 2J2āFRVk2ȍR + 2J�ācos(NȍR�ĳ�� fits, respectively, and inset illustrates the 592 
applicable quasi-2D tight-binding model.  593 



Topological mechanics

Situations similar to quantum Hall effect can also be realized 
with Newtonian mechanics

https://www.youtube.com/watch?v=__TGJEtFD-E

ETH Zurich: Süsstrunk & Huber, Science 349, 47 (2015)

https://www.youtube.com/watch?v=__TGJEtFD-E


Two-pendulum experiment

Two-pendulum experiment in collaboration with Gadway group @ University of Illinois

Measurement of non-Hermitian 
Berry phase
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Natural frequency of a pendulum is 3Hz 
Pendulums are coupled to electromagnets, through which 
forces can be applied

Theory

Experiment

Time

• Martello, Singhal, Gadway, TO, Price, arXiv:2302.03572 
• Singhal, Martello, Agrawal, TO, Price, Gadway, arXiv:2205.02700 
• Anandwade, Singhal, Paladugu, Martello, Castle, Agrawal, Carlson, 

Battle-McDonald, TO, Price, Gadway, arXiv:2107.09649



Equatorial wave

霜
Earth

Kelvin wave 
Yanai-Maruyama wave

Ocean Land

Moving objects on the earth feel the Coriolis 
force due to the rotation of the earth

Magnetic 
field

Charged 
particle

Lorentz force
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~v

Coriolis force
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F = mvf

Coriolis force and Lorentz force are very similar

Kelvin wave and Yanai-Maruyama waves turned 
out to be the topological edge modes 

Delplace, Marston, & Venaille, Science 358, 1075 (2017)

There are ocean and atmospheric waves called Kelvin wave and Yanai-Maruyama wave, 
which flow along the equator to the east



Neural stem cell

Stem cells of mice can move around 

• They seem to bend in one direction (perhaps due to left-right 
asymmetry of cells) 

• This motion looks similar to particles under Lorentz or Coriolis force 
• When the cells are confined to move in a region with edges, they flow 

along the edges



Topological band structure of cell motion

5-by-5 matrix
Source term

One can model the system using the language of active matter 
Linearizing the fluid equation, the resulting equation looks like the Schrödinger equation
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Order parameter

The “Hamiltonian” H resembles the one in the case of equatorial waves
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Fig. 4. Spectrum of the hydrodynamic theory and cell density from experiments. a, Energy spectrum of the non-Hermitian Hamiltonian
H calculated with the stripe boundary condition with ✓ = 0.2 rad/hour. Colour indicates the position of the localization of the modes, and
the intensity of the colour indicates the contribution of the mode to the density fluctuation. b, Positions of the edge and bulk regions used for
the calculation of the power spectrum. The background is the H2B-mCherry channel image with the condition L = 300 µm. We defined the
edge (left) as the 25 µm wide region from the boundary and the bulk (right) as the 100 µm wide region in the center. c, Power spectrum of
the cell density calculated by the spatio-temporal Fourier transform of the H2B-mCherry signal. Average over six regions. The blue line is the
linear fit to the maxima of the power spectrum for each ky. v0 = 72 µm/hours is obtained from the data analysis, and we set ⌧ = 2.5 hours.
d,e, Single cell velocity (d) and the edge flow velocity (e) versus the slope obtained as the fit to the power spectrum of the edge cell density.
Each data point represents an independent experiment with L = 200 µm or 300 µm that includes four or more regions. Error bars: s.d. f,g,

Power spectrum upon application of Jasplakinlide with low (f, 3.75 nM) and high (g, 30 nM) concentrations. v0 = 50 µm/hours (f) and v0 = 47
µm/hours (g) are obtained from the data analysis, and we set ⌧ = 2.5 hours. Average over five or more regions.

the single cell velocity (v0) of the NPCs under each condi-
tion (Fig. 4d,e). Lastly, this unidirectional mode weakened
(Fig. 4f) and switched direction (Fig. 4g) upon the application
of Jasplakinolide. These results are consistent with the inter-
pretation that the unidirectional edge mode observed in the
fluctuation of the cell density is the topological Kelvin wave.
We also found that the spectrum of the particle density fluctu-
ation in the agent-based model follows a similar pattern (Ex-
tended Data Fig. 7b,c).

The main di↵erence between our non-Hermitian setup and
the previously studied Hermitian system [19] is that there is
no band gap observed within the realistic range of parame-
ters. Nevertheless, we found that the band gap can be induced
by assuming larger chirality in the same equation, where the
bands can be found to have non-trivial topological Chern num-
bers (Extended Data Fig. 5, see Supplementary Information).
The mode described by Eq. (3) existed irrespective of the en-
ergy gap, which matched with one of the topological edge
modes in the case where the gap was open. The gapped
Hamiltonian can be continuously deformed continuously to a
Hermitian Hamiltonian without closing the gap, and the prop-

erty of the edge localized mode does not change along this
path. The extent of edge localization of the unidirectional
modes depended on ✓, and the regime of the experiment and
simulation (✓ = 0.2 rad/hours) is where there is significant
edge localization of the modes without the energy gap. There-
fore, we find that the edge modes generated by the NPCs, the
agent-based model simulation, and the non-Hermitian theory
are all remnants of the topological edge modes observed in
Hermitian and gapped systems [19].

In the band structure analysis of the non-Hermitian model,
we further noticed that many of the modes identified in the
bulk band for the periodic boundary condition are localized at
the edge under the open boundary condition (Extended Data
Fig. 5e). This is a phenomenon called the non-Hermitian skin
e↵ect, which has also recently been shown to have a topolog-
ical origin [48, 49]. The direct consequence of this e↵ect in
chiral active matter is yet to be elucidated.

Discussion and conclusion

In this work, we have shown that the chiral nature of the
NPCs can produce not only a chiral spiral pattern in the col-
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Fig. 4. Spectrum of the hydrodynamic theory and cell density from experiments. a, Energy spectrum of the non-Hermitian Hamiltonian
H calculated with the stripe boundary condition with ✓ = 0.2 rad/hour. Colour indicates the position of the localization of the modes, and
the intensity of the colour indicates the contribution of the mode to the density fluctuation. b, Positions of the edge and bulk regions used for
the calculation of the power spectrum. The background is the H2B-mCherry channel image with the condition L = 300 µm. We defined the
edge (left) as the 25 µm wide region from the boundary and the bulk (right) as the 100 µm wide region in the center. c, Power spectrum of
the cell density calculated by the spatio-temporal Fourier transform of the H2B-mCherry signal. Average over six regions. The blue line is the
linear fit to the maxima of the power spectrum for each ky. v0 = 72 µm/hours is obtained from the data analysis, and we set ⌧ = 2.5 hours.
d,e, Single cell velocity (d) and the edge flow velocity (e) versus the slope obtained as the fit to the power spectrum of the edge cell density.
Each data point represents an independent experiment with L = 200 µm or 300 µm that includes four or more regions. Error bars: s.d. f,g,

Power spectrum upon application of Jasplakinlide with low (f, 3.75 nM) and high (g, 30 nM) concentrations. v0 = 50 µm/hours (f) and v0 = 47
µm/hours (g) are obtained from the data analysis, and we set ⌧ = 2.5 hours. Average over five or more regions.

the single cell velocity (v0) of the NPCs under each condi-
tion (Fig. 4d,e). Lastly, this unidirectional mode weakened
(Fig. 4f) and switched direction (Fig. 4g) upon the application
of Jasplakinolide. These results are consistent with the inter-
pretation that the unidirectional edge mode observed in the
fluctuation of the cell density is the topological Kelvin wave.
We also found that the spectrum of the particle density fluctu-
ation in the agent-based model follows a similar pattern (Ex-
tended Data Fig. 7b,c).

The main di↵erence between our non-Hermitian setup and
the previously studied Hermitian system [19] is that there is
no band gap observed within the realistic range of parame-
ters. Nevertheless, we found that the band gap can be induced
by assuming larger chirality in the same equation, where the
bands can be found to have non-trivial topological Chern num-
bers (Extended Data Fig. 5, see Supplementary Information).
The mode described by Eq. (3) existed irrespective of the en-
ergy gap, which matched with one of the topological edge
modes in the case where the gap was open. The gapped
Hamiltonian can be continuously deformed continuously to a
Hermitian Hamiltonian without closing the gap, and the prop-

erty of the edge localized mode does not change along this
path. The extent of edge localization of the unidirectional
modes depended on ✓, and the regime of the experiment and
simulation (✓ = 0.2 rad/hours) is where there is significant
edge localization of the modes without the energy gap. There-
fore, we find that the edge modes generated by the NPCs, the
agent-based model simulation, and the non-Hermitian theory
are all remnants of the topological edge modes observed in
Hermitian and gapped systems [19].

In the band structure analysis of the non-Hermitian model,
we further noticed that many of the modes identified in the
bulk band for the periodic boundary condition are localized at
the edge under the open boundary condition (Extended Data
Fig. 5e). This is a phenomenon called the non-Hermitian skin
e↵ect, which has also recently been shown to have a topolog-
ical origin [48, 49]. The direct consequence of this e↵ect in
chiral active matter is yet to be elucidated.

Discussion and conclusion

In this work, we have shown that the chiral nature of the
NPCs can produce not only a chiral spiral pattern in the col-

5

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

0 20 40 60 80

í���

í���

0.0

0.5

1.0

(kyv0W�Wavenumber (kyv0W�Wavenumber

Jasplakinolide 30 nM

Edge

Edge

Bulk

Bulk

No drugc

fd

e

a

b

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

En
er

gy
 (R

e(
E)
W)

Jasplakinolide 3.75 nM
g

Edge flow velocity (Pm/hr)

Cell velocity v0 (Pm/hr)

Sl
op

e 
/ C

el
l v

el
oc

ity
 v

0
Sl

op
e 

/ E
dg

e 
flo

w
 v

el
oc

ity

No drug
Jaspl 30 nM

(Z
W�

Fr
eq

ue
nc

y

(kyv0W�Wavenumber

(Z
W�

Fr
eq

ue
nc

y

(kyv0W�Wavenumber

(Z
W�

Fr
eq

ue
nc

y
(Z
W�

Fr
eq

ue
nc

y

(kyv0W�Wavenumber

í��í�� 0 20 40 60 80
í�
0
1
2
3
4
5
6
7

Localization

Right edgeLeft edge

Density component

10

No drug
Jaspl 30 nM

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0
Edge Edge

x

y

Fig. 4. Spectrum of the hydrodynamic theory and cell density from experiments. a, Energy spectrum of the non-Hermitian Hamiltonian
H calculated with the stripe boundary condition with ✓ = 0.2 rad/hour. Colour indicates the position of the localization of the modes, and
the intensity of the colour indicates the contribution of the mode to the density fluctuation. b, Positions of the edge and bulk regions used for
the calculation of the power spectrum. The background is the H2B-mCherry channel image with the condition L = 300 µm. We defined the
edge (left) as the 25 µm wide region from the boundary and the bulk (right) as the 100 µm wide region in the center. c, Power spectrum of
the cell density calculated by the spatio-temporal Fourier transform of the H2B-mCherry signal. Average over six regions. The blue line is the
linear fit to the maxima of the power spectrum for each ky. v0 = 72 µm/hours is obtained from the data analysis, and we set ⌧ = 2.5 hours.
d,e, Single cell velocity (d) and the edge flow velocity (e) versus the slope obtained as the fit to the power spectrum of the edge cell density.
Each data point represents an independent experiment with L = 200 µm or 300 µm that includes four or more regions. Error bars: s.d. f,g,

Power spectrum upon application of Jasplakinlide with low (f, 3.75 nM) and high (g, 30 nM) concentrations. v0 = 50 µm/hours (f) and v0 = 47
µm/hours (g) are obtained from the data analysis, and we set ⌧ = 2.5 hours. Average over five or more regions.

the single cell velocity (v0) of the NPCs under each condi-
tion (Fig. 4d,e). Lastly, this unidirectional mode weakened
(Fig. 4f) and switched direction (Fig. 4g) upon the application
of Jasplakinolide. These results are consistent with the inter-
pretation that the unidirectional edge mode observed in the
fluctuation of the cell density is the topological Kelvin wave.
We also found that the spectrum of the particle density fluctu-
ation in the agent-based model follows a similar pattern (Ex-
tended Data Fig. 7b,c).

The main di↵erence between our non-Hermitian setup and
the previously studied Hermitian system [19] is that there is
no band gap observed within the realistic range of parame-
ters. Nevertheless, we found that the band gap can be induced
by assuming larger chirality in the same equation, where the
bands can be found to have non-trivial topological Chern num-
bers (Extended Data Fig. 5, see Supplementary Information).
The mode described by Eq. (3) existed irrespective of the en-
ergy gap, which matched with one of the topological edge
modes in the case where the gap was open. The gapped
Hamiltonian can be continuously deformed continuously to a
Hermitian Hamiltonian without closing the gap, and the prop-

erty of the edge localized mode does not change along this
path. The extent of edge localization of the unidirectional
modes depended on ✓, and the regime of the experiment and
simulation (✓ = 0.2 rad/hours) is where there is significant
edge localization of the modes without the energy gap. There-
fore, we find that the edge modes generated by the NPCs, the
agent-based model simulation, and the non-Hermitian theory
are all remnants of the topological edge modes observed in
Hermitian and gapped systems [19].

In the band structure analysis of the non-Hermitian model,
we further noticed that many of the modes identified in the
bulk band for the periodic boundary condition are localized at
the edge under the open boundary condition (Extended Data
Fig. 5e). This is a phenomenon called the non-Hermitian skin
e↵ect, which has also recently been shown to have a topolog-
ical origin [48, 49]. The direct consequence of this e↵ect in
chiral active matter is yet to be elucidated.

Discussion and conclusion

In this work, we have shown that the chiral nature of the
NPCs can produce not only a chiral spiral pattern in the col-
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Topological phases
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