AMO Physics:

its diversity and specialty to bridge the gap between physics, biology and medical science

Toshiyuki Azuma

東俊行

Atomic, Molecular and Optical Physics Lab. RIKEN

Lesson I : Physics and Medical Science

Lesson II : Interdiscplinary Science

requested from Japanese Quatum Medical Science Society to provide a public lecture:

the title was "what is quantum, and what is quantum beam?"

expected audience ?

Quiz

Is the electron a wave or a particle?

1) wave

2) particle

3) both

4) neither

HIMAC: heavy ion medical accelerator

Dedicated for cancer therapy at National Institute of Radiological Science @Chiba

Cancer irradiation

HIMAC: heavy ion medical accelerator

14,000 patients @2022.3

HIMAC: heavy ion medical accelerator

Ion beams at HIMAC are fast and heavy. Are they "quantum beam" ?

290 MeV/amu (65% of the speed of light)

Carbon beam (炭素)

so... total energy is 3.5 GeV

de Broglie wavelength = 3.2×10^{-16} m

$$\lambda = rac{h}{mv}$$
 λ : wavelength of wave
 m : mass of particle
 h : Planck constant v : velocity of particle

Bragg peak

Distribution of depth versus dose for various types of radiation in the living body

Doses are concentrated at the end point

Small effect at the entrance point

Complicated issues on radiation damage ?

Electronic and nuclear stopping power for Al ions in Al

Complicated issues on radiation damage ?

NO ! at the higher energy regions

Electronic and nuclear stopping power for Al ions in Al

Bragg peak

Distribution of depth versus dose for various types of radiation in the living body

Let's replace the body skin with

a tiny thin Si crystal

1 micron-thick 10mm diameter

ion moving in the periodic potential

 $\Delta E = h \frac{v}{d}$

projectile-flame: oscillating electric field

Atomic translational energy → Atomic internal energy

Crystal irradiation

Silicon crystal

- "virtual photon" source
- spectrometer
- strong electric field

Okorokov-effect vs. resonant coherent excitation

Okorokov effect

JETP Lett. 2, 111(1965)

V. V. Okorokov (Russia)

from 1 eV to 100 MeV

Radiospectroscopy

predicted

Resonant coherent excitation vs. Okorokov-effect

J. Kondo (JAPAN)

described

Motion of a Fast Ion in Periodic Potentials

J. Phys. Soc. Japan 36, 1406(1974)

resonant coherent excitation vs. Okorokov-effect

RCE

S. Datz (US)

measured

N⁶⁺ through Au crystal under axial channeling

Phys. Rev. Lett. 40, 843(1978)

RCE of high energy ions

3D-RCE

interaction frequency in 3D-RCE

 \rightarrow frequency traversing the atomic planes

the atomic planes are specified by corresponding to reciprocal vector of with Miller Index (*k*,*l*,*m*)

$$\vec{g}_{klm} = k\vec{A}^* + l\vec{B}^* + m\vec{C}^*$$

after stripping most of the bound electrons,

Excitation of n=1(1s) electron to n=2 states

Energy levels of hydrogen-like system

391 MeV/u H-like Ar¹⁷⁺ 1s \rightarrow 2p

3D-RCE conditions

So many resonance conditions in random incidence !

Scanning the crystal angle with respect to the beam, charge state distribution of ions are monitored

electronic excitation process

Scanning the crystal angle with respect to the beam, de-excitation X-ray yields are monitored

3D-RCE resonance profile

391MeV/u H-like Ar¹⁷⁺

oscillating field by crystal periodic field

experimental setup

anisotropic x-ray emission depending on polarization

He-like Ar¹⁶⁺ ions (¹P): Large anisotropy !

X-ray detector (Vertical)

Х

Ζ

X-ray detector (Horizontal)

reflecting polarization direction of oscillating fields double resonance / 3D-RCE

Simultaneously, 2 oscillating fields of different frequencies are applied for 2 transitions

Double resonance: dressed-atom picture

2s-2p: for coupling 1s-2p: for probe

Avoided level crossing (charge state)

Avoided level crossing (charge state)

Asymmetric doublets

dressed state

Oscillation of wave functions at frequency of coupling field

Asymmetric doublets

low electron density in the neighborhood of atomic planes

ionization : decrease deexcitation: increase high electron density in the neighborhood of atomic planes

ionization : increase deexitation: decrease HIMAC: heavy ion medical accelerator

Ion beams at HIMAC are fast and heavy. Are they "quantum beam" ? Yes !

heavy ions are described by the plane-wave, and experience diffraction by a crystal.

400 MeV/amu H/He-like Heavy-lon

Si crystal

Can we observe diffraction of high-energy heavy ions ?

inelastic ion diffraction

Can we observe diffraction of high-energy heavy ions?

RCE: inelastic ion diffraction with internal excitation with a momentum transfer hg

Using the high-energy heavy ions,

in the day-time of the week days, medical doctors enjoy cancer therapy in the night and the week end, physisists enjoy quantum physics.

Physics and Medical Science coexist happily.

Lesson I : Physics and Medical Science

Lesson II : Interdisciplinary Science

astrophysics vs atomic physics

Grand-in-Aid for Scientific Research on Innovative Areas (2018-2022)

Toward new frontiers :

Encounter and synergy of state-of-the-art astronomical detectors and exotic quantum beams

Area manager: T. Takahashi (髙橋忠幸)

Encounter and Synergy of different fields

to break barriers between disciplines

Transition-Edge-Sensor microcalorimeter

Microcalorimeter

tiny thermometer

measuring temperature rise when x-rays are absorbed in a material (superconducting state)

AMO Physics and Astrophysics

X-ray satellite HITOMI

Electronic spectra of atoms (Fe) clarified "Gentle" Winds of a Galaxy Cluster

(keV

Photon count log scale The Hitomi collaboration Nature **535**, 117–121 (2016) X rays from Highly charged Fe ions

intense muon beam at J-PARC

Neutrino Beam To Kamioka

(30 Gev > So

J-PARC Facility

(KEK/JAEA)

another quantum beam

GeV

nchrotron

Hadron

Material and Life Science Facility

LINAC

Intense slow μ^- beam $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$

Energy: 120MeV/c (54MeV) down to 3.3MeV/c (~51keV) Intensity: 10⁶ per pulse for 20MeV/c Pulse width and repetition: ~200ns 25Hz

Muonic Atom

negative muon = "Heavy" electron

compared with normal atoms;

- a Bohr radius: 207 times smaller
- transition energies: 207 times larger
- muonic X-ray energies: 207 times larger

cf. H atom 1s-2p 122nm = 10eV vs. muonic hydrogen = 2keV

Bohr model : muonic atom vs highly charged ion

muonic atom VP > SE

Members: total 26 researchers from different fields

from Atomic Physics, Nuclear Physics, Astro Physics, Muon Physics

Members: total 26 researchers from different fields

from Atomic physics, Nuclear Physics, Astro Physics, Muon Physics

10 min. measurement setup (present version)

But the story never ends

• • •

more interdisciplenary finding

electronic x rays from muonic atom

red: negative muon white: electron

Muonic Atom

Muonic Atom

Muonic Atom

Screened also by other bound electrons (screening is reduced for smaller number of bound electrons)

2(

Z-0.?

We understand levels, and dynamics are simutated

Assuming an unchanged number of M-shell electrons.

Infinitely fast M-shell refilling from metal band

simulated dynamics of energy distribution of K X-rays

虪 comparison: experimental data vs simulation

Lesson I : Physics and Medical Science

Lesson II : Interdisciplinary Science

astrophysics vs atomic physics

We can find something new and exciting by encounter of different fields of science