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Nobel Prize 2020: Black holes’ existence confirmed

Milky Way, Sagittarius A*

or Lt

M=4x10° M

eck/

Galactic C e* 1995-2014

R. Penrose
R. Genzel
A. Ghez

Observations: BHs exist!

= PBH is a plausible
dark matter candidate,
the only candidate
known to exist in nature



fPBH = QPBH/QDM

Experimental constraints
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A - Dark matter [Murayama, Melia]

B - candidate events from HSC, OGLE
[1701.02151, 1901.07120]

C - interesting for GW, as well as
transmuted NS -> BH population
[1707.05849; 2008.12780]

D - seeds of supermassive black holes
[astro-ph/0204486,
arXiv:1202.3848, 2008.11184]



First candidate events
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; 3. One remaining candidate that passed all the selection criteria of

) sing event. The images in the upper plot show the postage-stamped
/1] 77 TloptNasmytn  "ound the candidate as in Fig. 7: the reference image, the target im-
LA/ )| Focus lifference image and the residual image after subtracting the best-fit
e, respectively. The lower panel shows that the best-fit microlensing
/es a fairly good fitting to the measured light curve.
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How to make PBHs

Need a ~30% or higher overdensity early
enough in the history of the universe.

Primordial fluctuations enhanced on
small scales (inflation model)
Yukawa interactions, “long-range”
forces, radiative cooling => PBH
Supersymmetry: Q-balls as building
blocks of PBH

Supersymmetry: Q-balls with
long-range scalar forces

Multiverse => PBHs

e THE BEST

Simple

RECIPES

horizon size on your screen
corresponds to T ~ 10%-10° GeV

200 Flavorful Recipes that Cook in 30 Minutes or Less
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PBH formation mechanism: Yukawa “fifth force”

Yukawa interactions: i a heavy fermion interacting
Vi) = L yxww with a light scalar

A light scalar field = long-range attractive force, =  instability similar to

stronger than gravity gravitational instability,
only stronger
= halos form even in radiation dominated universe
[Amendola et al., 1711.09915; Savastano et al., 1906.05300; Domenech, Sasaki, 2104.05271]
Same Yukawa coupling provides a source of radiative cooling by emission of

gravitational radiation = halos collapse to black holes
[Flores, AK, 2008.12456, PRL 126 (2021) 041101; 2008.12456]



Strong long-range force: instability and structure formation

é(x,t) =dp/p energy density perturbations (radiation)

A (CIZ, t) — Anw / T+ density perturbations of a kinetically decoupled particle
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A+ 30k = 5[0k + Q1+ 1) Ak = 0 B=y(Mp/my)>1 p = huge =

[Flores, AK, 200812456, PRL] fast growth, even in the radiation-dominated eral!
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Rapid growth of structures... plus radiative cooling!

Same Yukawa fields allow particles moving with acceleration emit scalar waves
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Flores, AK, Phys.Rev.Lett. 126 (2021) 4, 041101;
2008.12456
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PBH DM abundance natural for m ~1-100 GeV

Asymmetric dark matter models: Asymmetry in the dark sector = baryon asymmetry

In our case, all these particles end up in black holes: Similar to asymmetric dark matter
fomm = S22 _ g oMol _ (M) (v )
QDM ' mp NB 5 GeV 10_10
[Flores, AK, 2008.12456, PRL 126 (2021) 041101] / Jy 7
Natural explanation for the ratio = v
(dark matter density) / (ordinary matter density) % px | ]
for ~1-100 GeV masses e ; -
Mppu[Mo)




How to make PBHs

Need a ~30% or higher overdensity early
enough in the history of the universe.

Primordial fluctuations enhanced on
small scales (modify inflation)

Yukawa interactions, “long-range”
forces, radiative cooling => PBH
Supersymmetry: Q-balls as building
blocks of PBH
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Scalar fields in de Sitter space (used by Affleck-Dine)
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Scalar fields: an instability (Q-balls)

Gravitational instability can occurs due to the
attractive force of gravity.
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Similar instability can occur due to scalar -
self-interaction which is attractive:

U(9) D A3¢® ar AxopXP' ¢

¢~\ /'¢ R Lo [AK, Shaposhnikov, hep-ph/9709492]



Scalar fields: an instability (Q-balls)

homogeneous solution ¢(z,t) = p(t) = R(t)e**®
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Numerical simulations of scalar field fragmentation
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Affleck - Dine baryogenesis (SUSY): scalars are flat directions

—_—

. radiation dominated matter dominated modern era
Inflation
(dark energy
p=(1/3) P p=0 dominated)
origin of poc a'4 poc a'3
primordial
ST structures don't grow structures grow
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Size of “particles” affects Poisson fluctuations

S

, | %]
o T T,

o T oM R Y

many small particles =
small (poisson) fluctuations

few GIANT PARTICLES=
LARGE POISSON FLUCTUATIONS




Affleck-Dine process and scalar fragmentation in SUSY
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Yet another way to get PBHs from SUSY: long-range forces
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And yet another mechanism: inflationary multiverse

Tunneling events lead to nucleation of baby universes, which appear to outside
observer as black holes.

Deng, Vilenkin JCAP 12 (2017) 044

AK, Sasaki, Sugiyama, Takada, Takhistov, Vitagliano, Phys Rev Lett 125 (2020) 181304



Tail of the mass the function o<M"2 accessible to HSC




PBH masses, spins, and a new window on the early universe

Formation mechanism Mass range PBH spin

Inflationary perturbations DM, LIGO, supermassive small
[review: 2007.10722]

Yukawa “fifth force” [2008.12456] DM, LIGO, supermassive small
Long-range forces between SUSY Q-balls DM (mass range: 10"%-10° M) small
[2108.08416]

Supersymmetry flat directions, Q-balls DM (mass range: 10"%-10° M) large
[1612.02529, 1706.09003, 1907.10613]

Light scalar field Q-balls (not SUSY) DM, LIGO, supermassive large
[1612.02529, 1706.09003, 1907.10613]

Oscillons [1801.03321] DM, LIGO, supermassive large
Multiverse bubbles DM, LIGO, supermassive small

[1512.01819, 1710.02865, 2001.09160]



PBH and neutron stars

Neutron stars can capture PBH, which consume and
destroy them from the inside.

e Capture probability high enough in DM rich
environments, e.g. Galactic Center

e Missing pulsar problem...

[e.g. Dexter, O'Leary]
e What happens if NSs really are systematically destroyed by

PBH?
Neutron star destruction by black holes ,  NEUTRON
=r-process nucleosynthesis, 511 keV, FRB STAR

[Fuller, AK, Takhistov, Phys.Rev.Lett. 119 (2017) 061101 ] @«GRE NU c | D E
¥ §&‘$§?‘ ¥



MSP spun up by an accreting PBH

e MSP with a BH inside, spinning near mass
shedding limit: elongated spheroid
e Rigid rotator: viscosity sufficient even without

- : . :
" magnetic fields [Kouvaris, Tinyakov]; more so if
O magnetic field flux tubes are considered
() e Accretion leads to a decrease in the radius,

increase in the angular velocity (by angular
momentum conservation)
e Equatorial regions gain speed in excess of

r-process material . . .
g escape velocity: ejection of cold neutron matter

[Fuller, AK, Takhistov, Phys. Rev. Lett. 119 (2017) 061101] also, Viewpoint by H.-T. Janka



Primordial black holes, neutron stars, and the origin of gold

Light elements are
formed in the Big Bang
Heavy elements, up to
Fe, are made in stars

What about Au, Pt, U...?
PBH can play a role

Shigehiro Nagataki
Gordon Baym
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s-process cannot produce
peaks of heavy elements
Observations well described by
r-process

Neutron rich environment
needed

Site? SNe? NS-NS collisions?..
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SCIENTISTS DAZED AND CONFUSED BY EXTRARDINARY AMOUNT OF GOLD IN THE
UNIVERSE

AN

There's too much gold in the universe. No
one knows where it came from.

By Rafi Letzter - Staff Writer 12 days ago

NS-NS might not be not enough...

Something is showering gold across the universe. But no one
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Figure 39. The time evolution (in Gyr) of the origin of elements in the periodic table: Big Bang nucleosynthesis (black), AGB stars (green), core-collapse supernovae [KOb a ashi et al
including SNe II, HNe, ECSNe, and MRSNe (blue), SNe Ia (red), and NSMs (magenta). The amounts returned via stellar mass loss are also included for AGB stars y °
and core-collapse supernovae depending on the progenitor mass. The dotted lines indicate the observed solar values. APJ 900179, 2020]



r-process material: observations

Milky Way (total): M~10*M

Ultra Faint Dwarfs (UFD): most of UFDs show no enhancement of r-process
abundance.

However, Reticulum Il shows an enhancement by factor 10%-103!

“Rare event” consistent with the UFD data:
one in ten shows r-process material
[Ji, Frebel et al. Nature, 2016]



NS disruptions by PBHs
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NS disruptions by PBHs

Weak/different GW signal

No significant neutrino emission
Fast Radio Bursts

Kilonova event without a GW
counterpart, but with a possible
coincident FRB

(Vera Rubin Observatory, ZTE....)
511 keV line
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511-keV line in Galactic Center

Origin of positrons unknown. Need to produce
10°° positrons per year. Positrons must be
produced with energies below 3 MeV to
annihilate at rest. [Beacom,Yuksel ‘08]

Cold, neutron-rich material ejected in PBH-NS
events is heated by f-decay and fission to ESA/Bouchet et al.
T~0.1 MeV

—> generate 10°° e*[yr for the rates needed to F(€+€_ — 7"7) e 1050}71"_1
explain r-process nucleosynthesis.

Positrons are non-relativistic.
Fuller, AK, Takhistov, Phys. Rev. Lett. 119 (2017) 061101



Fast Radio Bursts (FRB)

Origin unknown. One repeater, others: non-repeaters. T~ ms.

PBH - NS events: final stages dynamical time scale T~ ms.

NS magnetic field energy available for release: ~1041erg
Massive rearrangement of magnetic fields at the end of the
NS life, on the time scale ~ms produces an FRB.
Consistent with observed FRB fluence.

Fuller, AK, Takhistov, Phys.Rev.Lett. 119 (2017) 6, 061101; 1704.01129
Abramowicz, Bejger, Wielgus, Astrophys. J. 868, 17 (2018); 1704.05931
Kainulainen, Nurmi, Schiappacasse, Yanagida, arXiv:2108.08717



GW detectors can discover small PBH...

.if it detects mergers of

PBH + NS 1-2 M black holes
.U. (not expected from evolution of stars)

DNS

BH of 1-2 M,

[Takhistov et al., 1704.01129, 1707.05849; ,
2008. 1 2780] 8.5 1.0 1.5 2.0 25

Transmu ted BH Mass [My]




Simple, generic formation scenarios in the early universe:
PBH from scalar forces, PBH from a scalar field fragmentation, PBH from vacuum bubbles...
PBH with masses 107¢ - 10°1° Mg, motivated by 1-100 TeV scale supersymmetry,
can make up 100% (or less) of dark matter. PBH is a generic dark matter candidate in SUSY
PBH from ~ 1-100 GeV scale particles can naturally explain DM abundance
Microlensing (HSC) can detect the tail of DM mass function.
PBH can contribute to r-process nucleosynthesis
Signatures of PBH:
o Kilonova without a GW counterpart, or with a weak/unusual GW signature
o An unexpected population of 1-2 M black holes (GW)
o  Galactic positrons, FRB, etc.
Yukawa forces = primordial structures = PBH, baryogenesis, other consequences!
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