

<u>Quest to understand</u> the origin of the Solar system

Nami Sakai (CPR, RIKEN)

Supported by

KAKENHI: Grant-in-Aid for Transformative Research Areas (A) FY2020-FY2024 RIKEN Pioneering Research Project "Evolution of Matter in the Universe (r-EMU)" FY2019-FY2023

Existence of "life" Common or Miracle?

"Where do we come from?" → "How did we get here?"

Why Baryon?

History of formationFof Matter

Molecules in Space (~275 species)

2 Atoms (42 Species)

H₂, CO, AIF, AICI, C₂, CH, CH⁺, CN, CO⁺, CP, SiC, HCI, KCI, NH, NO, NO⁺(?), NS, NS⁺, NaCI, OH, PN, SO, SO⁺, SiN, SiO, SiS, CS, HF, HD, FeO (?), O₂, CF⁺, SiH (?), PO, PO⁺, AlO, OH⁺, CN⁻, SH⁺, SH, HCl⁺, TiO, ArH⁺, HeH⁺, NO⁺ (?), N₂

3 Atoms (40 Species)

C₃, C₂H, C₂O, C₂S, CH₂, HCN, HCO, HCO⁺, HCS⁺, HOC⁺, H₂O, H₂S, HNC, HNO, MgCN, MgNC, N₂H⁺, N₂O, NaCN, OCS, SO₂, c-SiC₂, CO₂, NH₂, H₃⁺, SiCN, AINC, SiNC, HCP, CCP, AIOH, H₂O⁺, H₂Cl⁺, KCN, FeCN, HO₂, TiO₂, C₂N, Si₂C, HS₂, HCS, HSC, HNO, CaNC, NCS

4 Atoms (27 Species)

c-C₂H, I-C₃H, C₃N, C₃O, C₃S, C₂H₂, NH₃, HCCN, HCNH⁺, HNCO, HNCS, HOCO⁺, H₂CO, H₂CN, H₂CS, H₃O⁺, c-SiC₃, CH₃, C₃N⁻, PH₃, HCNO, HOCN, HSCN, H₂O₂, C₃H⁺, HMgNC, HCCO, CNCN, HONO, MgC₂H, HCCS, HNCN, H₂NC, HCCS⁺

5 Atoms (23 Species)

 c_{s} , c_{4} H, C_{4} Si, l- C_{3} H₂, c- C_{3} H₂, H₂CCN, CH₄, HC₃N, HC₂NC, HCOOH, H₂CNH, H₂C₂O, H₂NCN, HNC₃, SiH₄, H₂COH⁺, C₄H⁻, HC(O)CN, HNCNH, CH₃O, NH₄⁺, H₂NCO⁺, NCCNH⁺, CH₃Cl, MgC₃N, NH₂OH, HC₃O⁺, HC₃S⁺, H₂C₂S, C₄S, HC(O)SH, HC(S)CN, HCCCO *i***COMs** (interstellar "Complex" Organic Molecules) Highly unsaturated species (Carbon-chain molecules: CCMs)

6 Atoms (17 Species)

 $(C_5H, I-C_4H_2, C_2H_4, CH_3CN, CH_3NC, CH_3OH, CH_3SH, HC_3NH^+, HC_2CHO, NH_2CHO, C_5N, I-HC_4H, I-HC_4N, c-H_2C_3O, H_2CCNH, C_5N^-, C_5N^-)$ HNCHCN, SiH₃CN, C₅S, MgC₄H, CH₃CO+, C₃H₃, H₂C₃S, HCCCHS, C₅O, C₅H⁺, HCCNCH⁺

7 Atoms (10 Species)

C₆H, CH₂CHCN, CH₃C₂H, HC₅N, CH₃CHO, CH₃NH₂, c-C₂H₄O, H₂CCHOH, C₆H⁻, CH₃NCO, HC₅O, HOCH₂CN, HCCCHNH, HC₄NC, c-C₃HCCH, I-C₅H₂, MgC₅N, CH₂C₃N

8 Atoms (11 Species)

CH₃C₃N, HC(O)OCH₃, CH₃COOH, C₇H, C₆H₂, CH₂OHCHO, I-HC₆H, CH₂CHCHO, CH₂CCHCN, H₂NCH₂CN, CH₃CHNH, CH₃SiH₃, H₂NC(O)NH₂, HCCCH₂CN, $HC_{s}NH^{+}$, $CH_{2}CHCCH$, $MgC_{6}H$, $C_{2}H_{3}NH_{2}$, (CHOH)₂

9 Atoms (10 Species)

CH₃C₄H, CH₃CH₂CN, (CH₃)₂O, CH₃CH₂OH, HC₇N, C₈H, CH₃C(O)NH₂, C₈H⁻, C₃H₆, CH₃CH₂SH, CH₃CH₂SH, CH₃NHCHO, HC₇O, HCCCHCHCN, H₂CCHC₃N, $H_2CCCHCCH, HOCHCHCHO(?)$

10 Atoms (5 Species)

 CH_3C_5N , $(CH_3)_2CO$, $(CH_2OH)_2$, CH_3CH_2CHO , CH_3CHCH_2O , CH_3OCH_2OH , $c-C_6H_4$, H_2CCCHC_3N , C_2H_5NCO , $C_2H_5NH_2$ (?), HC_7NH^+

11 Atoms (4 Species)

HC₉N, CH₂C₆H, C₂H₅OCHO, CH₃OC(O)CH₃, CH₂C(O)CH₂OH, c-C₅H₆, HOCH₂CH₂NH₂

12 Atoms (4 Species)

 $c-C_6H_6$, $n-C_3H_7CN$, $i-C_3H_7CN$, $C_2H_5OCH_3$, $1-c-C_5H_5CN$, $2-c-C_5H_5CN$, CH_3C_7N (?), $n-C_3H_7OH$, $i-C_3H_7OH$ >12 Atoms (3 Species)

(Gray: Detected only toward AGB stars) C₆₀, C₇₀, C₆₀⁺, c-C₆H₅CN, HC₁₁N, 1-C₁₀H₇CN, 2-C₁₀H₇CN, c-C₉H₈, 1-c-C₅H₅CCH, 2-c-C₅H₅CCH (The Cologne Database for Molecular Spectroscopy (CDMS): June. 2022)

GBT Observations of TMC-1: Hunting Aromatic Molecules (GOTHAM)

PI: Brett A. McGuire (e.g. McGuire, B. A., et al. 2020, ApJ, 900, L10; McCarthy, M. C., et al. 2021, Natur., 5, 176 Loomis, R. A., et al. 2021, Natur. Astro., 5, 188)

QUIJOTE: Q-band Ultrasensitive Inspection Journey to the Obscure TMC-1 Enviroment: Discovering the limits of chemical complexity

PI: Jose Cernicharo

(Guélin, Michel & Cernicharo, Jose, 2022, Frontiers in Astronomy and Space Sciences, vol. 9, id. 787567, and references therein)

Formation of atoms (Nucleosynthesis in stars) Formation of dust (M/C Giants, SN)

Nucleus

f) matured system (star and planetary system) Diffuse Ionized gas $T \simeq 100 \text{ K}$ \rightarrow HI cloud (Neutral atoms) → Molecular Cloud e.g. $O \xrightarrow{H_3^+, H_2^-} OH \xrightarrow{C} CO$

a) diffuse atomic cloud

Ice(dust)surface

T~10K Density>10⁵cm⁻³ b) molecular cloud (gas and dust) Hydrogenation e.g. CO \rightarrow CH₃OH

c) dense cloud core

Evaporation Gas-phase reactions

dust surface

Chemical Evolution

e) protostar and protpplanetary disk

Ice(dust)surface

d) protostar, protostellarenvelope/disk, and outflow/jet

20K < T< 100K Dynamical change of physical condition, Diffusion of heavier elements on dust, Gas-dust interaction

Complex organics

Chemical Composition in Cloud-Core (Envelope) Scale

Which is the dominant case ? Which is the case for our solar system??

Exploring core (~5,000 au) scale diversity (Nobeyama 45 m + IRAM 30 m survey toward Class0/I sources@2014-2016)

(Higuchi, NS et al. 2018, ApJS, 236, 52)

Radio Telescope: Lower Spatial Resolution Single-Dish: a few 10s arcsec cf; SUBARU (Infrared-Optical): 0.2-0.02 arcsec

ドイツ: MPIfR 100 m電波望遠鏡

The Robert C. Byrd Green Bank Telescope, commonly known as the GBT

Scientists take lemons and make lemonade.

The NRAO was able to do more than just replace the 300-foot telescope. In fact, the loss of the big dish became a catalyst for a totally new, unconventional telescope design. The GBT's offset optics and active surface are unique among large radio telescopes. The GBT is the world's largest, fully steerable radio telescope.

United States Senator Robert C. Byrd helped secure congressional funding for the telescope project.

Think you're having a bad day? Sometimes telescopes have them too!

NRAO, Green Bank, West Virginia

9:43 p.m., Tuesday, November 15, 1988

Green Bank's largest telescope collapsed.

Metal fatigue in the antenna's support was determined to be the cause. After delivering 26 years of service (far beyond its life expectancy) the 300-foot diameter telescope dish sank to its foundation, beyond repair.

The loss of the 300-foot telescope resulted in the Green Bank Telescope Project.

ALMA: Atacama Large Millimeter/sub-millimeter Array

High angular resolution $1" \rightarrow <0.01"-0.1"$

High sensitivity 100 hours \rightarrow 10 min.

Altitude: 5000 m

7 mm - 0.4 mm (40 - 940 GHz)

Main antenna : 12 m x 50 ACA antenna: 12 m x 4, 7 m x 12 Total:66

2014, full operation started Europe, North America, and East Asia in cooperation with Chile

Formation of Planetary System & Observational Challeng

Oxygen vs Nitrogen Chemistry

Beautiful correlation between CH_3OH and CH_3CN Chem. relation & Large abundance range (>10² times).

(Yang, Y-L, NS+2021, ApJ, 910, 20.)

Seneration

Locate our Solar system in the diversity

Next Generation

Astrochemistr

Required accuracy for Doppler analysis

Thermal line width ~ 0.1 km/s

→<<250 kHz @ 800 GHz=0.8 THz (Various high excitation lines) ALMA

→ <<50 kHz @ 160 GHz (iCOMs)
ALMA/NOEMA & IRAM-30m

→ <<5 kHz @ 16 GHz (Larger iCOMs e.g. with rings)
VLA & GBT/Yabes-40m

Infrared Thermometers

-Measure energy from stars

Check human body for a fever

by measuring the heat energy →Ideal for anyone who may have to worry about cross contamination such as infants.

Technology Developed for Astronomy Meets Molecular Science ?

Heterodyne Radio-Receiver

Intensity Measurement of Lines from Molecules

Determine temperature and abundance without direct interaction with the gas.

<u>Observing Gas Cell instead of the Sky</u>

Disadvantage: low sensitivity for 1 line detection

Conventional Absorption Spectrometer

(Watanabe, Y.,,,Sakai,N+2021, PASJ, 73, 372)

SUMIRE "Observing" gas-cell instead of the sky

Spectrometer Using superconductor MIxer REceiver in RIKEN

Receivers

Next Generation Astrochemistry

- 215-265 GHz band (ALMA-B6, SIS)- 270-500 GHz band (ALMA-B7+8, SIS)

Freq. accuracy: ~ 1 kHz

Int. accuracy: 5-10%

Determine

accurate frequency & absolute intensity ($S\mu^2$)

(Watanabe, Y., Chiba, M., Sakai, T., Tamanai, A., Suzuki, R., & Sakai, N. 2021, PASJ, 73, 372)

Intensity-Calibrated Spectroscopy

(Ohno, Y., Oyama, T., ,NS+2022, ApJ, 932, 101)

In JPL(NASA) web site

The intensites were calculated with the first order Fourier term of the dipole from normal methanol. The strongly allowed bands are reasonably well reproduced, but the weeker ones are not as well re-produced. Extreme caution should be used in determining columns (or concentrations) directly from b-type and c-type transitions as significant errors can occur. The a-type transitions should be much more reliable for column determinations.

