ISCO2023

New treatment strategies for intractable cancers brought about by the fusion of different fields of science

Hideyuki Saya, MD, PhD

Division of Gene Regulation, Cancer Center Fujita Health University, Aichi, Japan

Keio University School of Medicine, Tokyo, Japan

Malignant brain cancer : Glioblastoma

Cancer

A phenomenon in which normal cells change due to gene mutations, break the rules, proliferate abnormally, and survive for a long time.

Cancer cells invade surrounding organs or metastasize to distant organs, resulting in impairment of their functions.

Without treatment, various organ disorders eventually occur, leading to death.

How does cancer arise?

Normal skin structure

http://www.kumc.edu/instruction/medicine/anatomy/histoweb/skin/skin.htm

Normal tissue organization

Regulated cell proliferation, rapid turnover

The combination of 23,000 gene expressions determines the nature of each cell

Structure of skin cancer

CSC is resistant to conventional therapies

Therapeutic predictions of cancer stem cell model

Conventional cancer therapy

What do we need for cancer eradication?

- Novel therapeutic strategies for elimination of cancer stem cells
- > Detection of cancer stem cells in whole body
- Monitoring the cancer stem cells in patients treated by various therapeutic interventions

Therapeutic resistant mechanisms of cancer stem cells

- Resistant cells require high energy production (high ATP production) for survival and growth.
- High-energy-producing cells produce large amounts of reactive oxygen species (ROS).
- Resistant cells have **anti-oxidant system** for survival.

Blocking the anti-oxidant system may induce cell death in the resistant cells

Ishimoto et al., *Cancer Cell* 2011 Yae et al. *Nat Commun*, 2012

Drugs Induce Ferroptosis in Cancer Stem Cells •

Two primary targets: **xCT** and **ALDH** both collaborate to block oxidative stress

cancer stem cell

Cancer cell survive by blocking oxidative stress

Okazaki et al., *Oncotarget* 2019 Otsuki et al., *Cancer Sci* 2020

Drugs Induce Ferroptosis in Cancer Stem Cells •

Two primary targets: **xCT** and **ALDH** both collaborate to block oxidative stress

Drugs Induce Ferroptosis in Cancer Stem Cells •

Two primary targets: **xCT** and **ALDH** both collaborate to block oxidative stress

In vivo Mouse Model (HCT116 colon cancer cell line)

Otsuki et al., Cancer Sci 2020

What do we need for cancer eradication?

- Novel therapeutic strategies for elimination of cancer stem cells
- > Detection of cancer stem cells in whole body
- Monitoring the cancer stem cells in patients treated by various therapeutic interventions

OIST Mini Symposium "New Medical Imaging and Advanced Cancer Therapy (BNCT) Instrumentation" May 14-16, 2015

Organizer: Hirotaka Sugawara, Advanced Medical Instrumentation Unit, OIST

Kavli IPMU-JAXA-Keio collaboration project

Whole body imaging of cancer stem cells and therapeutic resistant cells by applying the technologies of particle physics and space science

Technologies for space telescope are applied to microscope

March 26, 2018

Application of the most advanced space exploration sensors to medicine

xCT inhibitor

Space exploration sensors may allow the detection of RI-labeled compounds incorporated in cancer stem cells.

Theranostics = Therpeutic +Diagnostic (Alphatherapy, BNCT etc.) ²²⁵ Ac ²¹¹ At

Animal models which pathologically and clinically recapitulate human cancers

Mouse cancer models established by using iCSC

tumor	cells-of-origin	transgenes	pathology	references
lymphoma	HSCs/progenitors	• N-myc • c-myc	Pre-B LBLMature B-cell lymphoma	Oncogene (2011) Blood (2017) Cancer Res (2020)
osteosarcoma	INK4a/Arf KO BMSCs	• c-myc	Osteosarcoma	JEM (2009) Oncogene (2010) Cancer Res (2019)
brain tumors	INK4a/Arf KO neural stem cells	• RasV12 • c-myc	GlioblastomaPNET	Neoplasia (2011) Stem Cells (2013) Neuro-Oncol (2014) Neuro-Oncol (2017) Nat Cell Biol (2019) Commun Biol (2020) JCI (2021)
breast cancer	INK4a/Arf KO mammary stem cells	• RasV12	Basal type	Oncogene (2013)
ovarian cancer	Normal ovarian Premature epithelial cells	• p53siRNA +RasV12 +c-myc	 Serous adenocarcinoma 	Carcinogenesis (2011)
lung cancer	INK4a/Arf KO EpCAM-positive lung cells	• KRasV12 • ELM4-ALK	AdenocarcinomaAdenocarcinoma	Cancers (2021)
cholangio- carcinoma	INK4a/Arf KO EpCAM-positive bile duct cells	• KRasV12	Adenocarcinoma	Cancer Sci (2021)

iCSC-based mouse tumor models

Genetically engineered glioma model

Sampetrean et.al., Neoplasia 2011

Glioma stem cell (GSC)-based brain tumor model

Sampetrean et.al., Neoplasia 2011

Self-renewal and differentiation abilities of GSCs

Sampetrean et.al., Neoplasia 2011

In vitro/ex vivo/in vivo

evaluation

RL Mort, Cell Cycle , 2014

Radiation-induced changes in the cell cycle - GSCs -

Medium change

Regrowth after 5Gy seen after day 4, in a nutrient/oxygen-dependent manner.

In vitro/ex vivo/in vivo

evaluation

Brain slice culture for visualizing iCSC in brain

In vitro/ex vivo/in vivo evaluation

High invasion ability of glioma iCSC

However, there is no way to detect a specific cancer cell population from outside the body without invasive procedures.

PET can detect approximately 1cm tumor which contains 10⁹ cells.

Activities at Kavli IPMU

Interdisciplinary approach

of applying cutting-edge technologies at the frontier of cancer research

- Development of advanced gamma-ray imagers for Imaging of intratumoral heterogeneity with ultra-high spatial resolution (~100 µm)
- Studies of image-reconstruction algorithm (3D, Inverse Problem, Statistical Analysis of Big Data, Deep Learning)

Activities include studies of RI-labeled Molecules and Drug Delivery System

- Designing and structural formula of chemical compounds for use in biological experiments
- Synthesizing radioisotope-labeled drugs
- Biological analyses using cells and small animals with

Keio U., National Cancer C.¹¹

Team Takahashi in Kavli IPMU

Takahashi

Takeda

Katsuragawa

Orita

Umeda

Sampetrean

Imaging of cancer stem cells

Separation of cancer stem cells from other cells requires high spatial resolution and multi-probe detection

SPECT imaging of cancer stem cell organoid

Organoids of NIS (natrium iodide symporter) expressing CSCs which can incorporate ¹²⁵I

Bright field.

SPECT

Yagishita, Takeda et al., Nat Biomed Eng 2022

multi-nuclide in vivo imaging

Yagishita, Takeda et al., Nat Biomed Eng 2022

Conclusions

- Collaborative research to detect heterogeneous cell groups in tumor tissue with 3D and multi-probe using state-of-the-art space observation sensor technology has started.
- We intend to build a system that can detect cancer cells with different properties in the living body at the single cell level and rapidly evaluate the therapeutic effect.
- We intend to developed a new THERANOSTICS by loading RI into the specific probe.