Calibration Source Deployment System

Atsumu Suzuki/Takatomi Yano Kobe University for SK Collaboration

21 July 2014 Hyper-Kamiokande Open Meeting

Motivation of Automated Calibration Source Deployment System

- In current SK calibration, we need much manpower and working time.
- We have to automate these works in HK, which is 20 times larger than SK.
- An approach to this problem is presented here.
 It is illustrated for one of the several calibration systems needed.
 - computer controlled (remote controlled)
 - compact and light-shielded (easy to use)

Test items

- It works.
- It is reliable and stable.
- It is safe.
 - avoiding falling things (especially calibration sources) into the detector
 - no light leak

After guaranteeing these items by several tests, we plan to test the system in SK. These results will be applied for HK calibration program.

Rough Design of Semi-automated System for Calibration

Most of SK calibration sources are deployed hanging by a wire

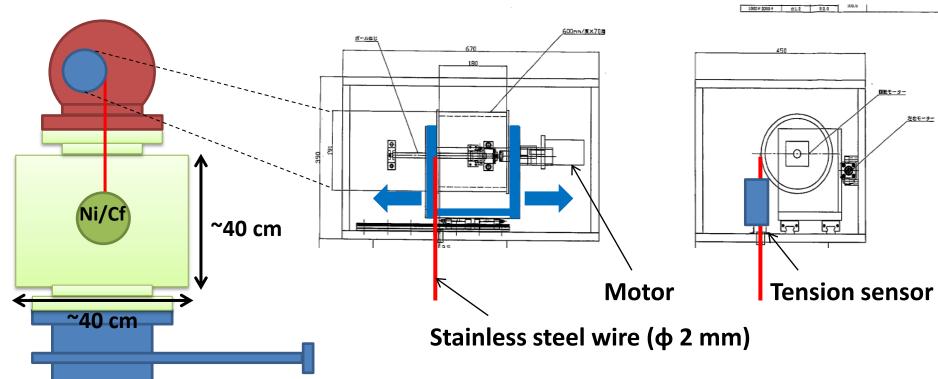
First

Calibration Source	Weight & size	Cable	
Ni/Cf (once a month) Absolute gain calibration	~ 10kg ~ ф 20 cm sphere	Stainless wire	← First Target
DT(~twice a year) To create ¹⁶ N via the (n,p) reaction on ¹⁶ O in the water Absolute Energy calibration	~ 50kg ~1.5m high	Stainless wire + Power cable	
Rayleigh Device (occasionally) Laser To measure Rayleigh scattering	~ 30kg ~1 m high	Stainless wire + Power cable + Optical fiber	
Diffuser Ball (LED) / Scintillation Ball (Xe) Timing/relative gain calibrations	~ 200g ~ф 5 cm sphere	Stainless wire + Optical fiber	
	*All sources are deployed	d through the	

calibration hole ($\sim \varphi$ 20 cm). Ni/Cf source is the first target. Although the weight and size are different, we can apply the same technique for the other sources.

Current Ni Calibration

Dark box \sim 2.5 m \times \sim 2.5 m


Set the dark box (We need 4 people.)
 Confirm light shielding
 Open the flange
 Set source box & winch
 Set the Ni source to the wire
 Take down the source about 1-2 m below manually
 Till 5m slowly by motor
 To the target position at the normal speed

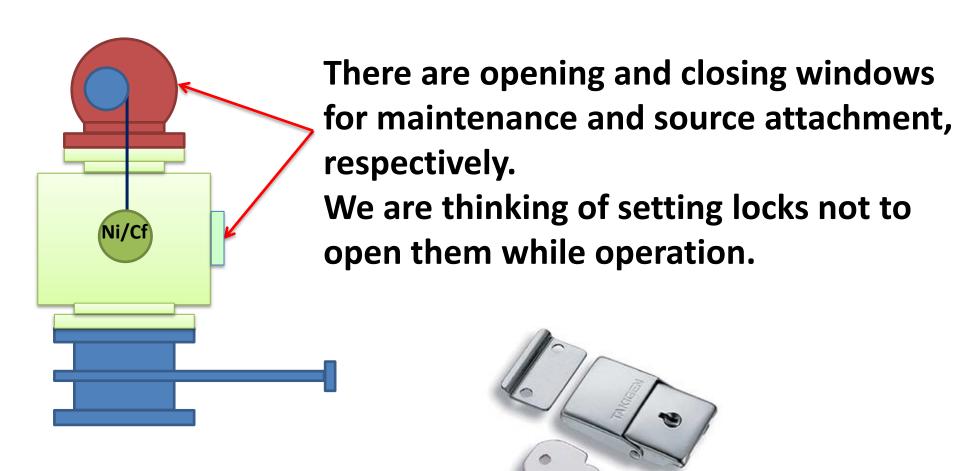
Procedures 2-8 have to be done in the dark box.

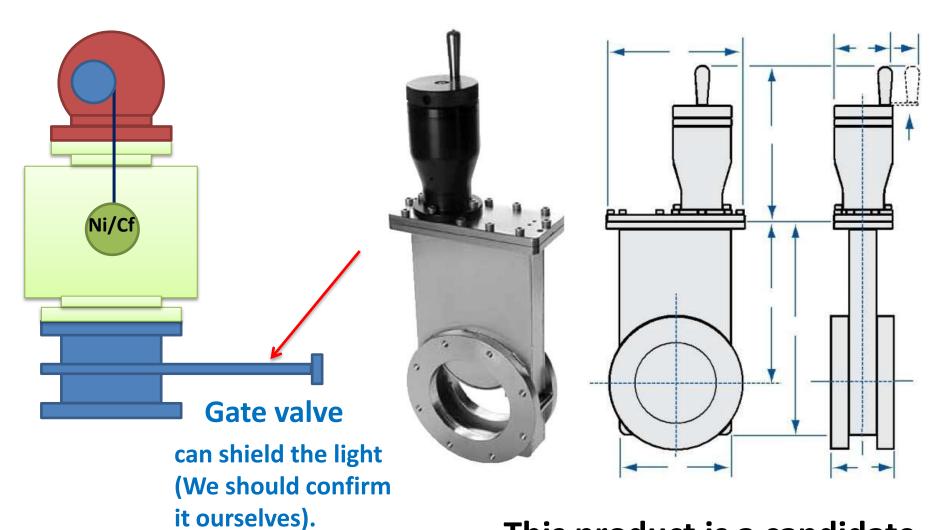
Winch & motor


Automate this work!

Current Design Status

- The drum is moved in right and left by a motor to keep the wire position while paying out or winding it (detail is under discussion).
- The wire is strong enough.


Current Design Status


Max. Meas. :200 N(~20kg), Sensitivity : 2 N

Current Design Status (cont'd)

Current Design Status (cont'd)

This product is a candidate.

Automatic gate valve is also considered.

Schedule

First design was proposed. Further design is under discussion among SK calibration group, taking into account the detector safety well.

FY2014

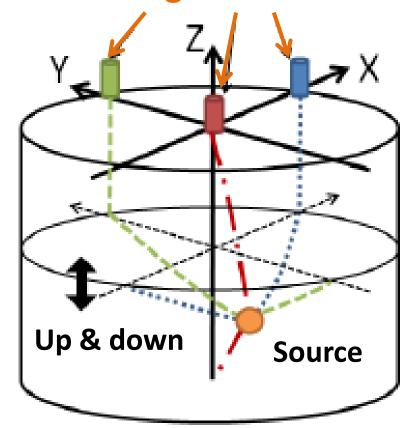
July-Sep.: Finalizing the design (safety first!)

Sep.-Dec.: Manufacturing

Dec.-Mar.: Test & study in the air

 basic operation, position precision, wire tension, etc in a short range (a few meters vertically)

Schedule (cont'd)


FY2015

1st half: Control software optimization & test in the water (small pool & water tank)

Fy2015 2nd half - FY2016

- Test in SK (if possible)
- Full operation in SK
- •Start R&D in the HK prototype (3D?)

Wire length controllers

Summary

- •A calibration source deployment system is planned.
- -For the time being only Ni calibration source is considered; controlled by PC, source operation in z direction, easy to deal under the lights.
- •The system will be manufactured in FY2014.
- The tests in the air/water will be done in FY2015
- •The tests in SK and full operation in SK is planned in FY2015 -FY2016.
- After guaranteeing the detector safety,
 reliability, stability, and good operability, we
 will apply the system at HK calibration.