

Recent Status of J-PARC Neutrino Beamline

Tetsuro Sekiguchi IPNS, KEK

Contents

- Introduction
- Overview of Horn Replacement Work
- Operation results after horn upgrade
- Summary

Neutrino Facility

20th, July, 2014

5th Open Meeting for Hyper-Kamiokande Project, Vancouver

Secondary Beamline

- Target Station (target and horns inside He vessel)
- Decay volume
- Beam dump

Target Station

- 3 horns / a baffle are placed inside He vessel
- Apparatus on the beam-line highly irradiated after beam.
- Handled by remote-controlled crane.

Contents

- Introduction
- Overview of Horn Replacement Work
- Operation results after horn upgrade
- Summary

- Acceptance of each component for high power beam
 - Target
 - Mechanical: **0.75MW**
 - Cooling: **0.75MW**
 - Horn
 - Cooling for conductors: 1.85MW
 - Cooling for striplines: **0.4MW**
 - Hydrogen production: **0.3MW**
 - Power supply: 0.4Hz, 250kA

These components limit the beam power

- He vessel, Decay Volume & Beam Dump
 - Cooling: 4MW(HV&DV), 3MW(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Acceptance of each component for high power beam

- Target
 - Mechanical: **0.75MW**
 - Cooling: **0.75MW**
- Horn
 - Cooling for conductors: 1.85MW
 - Cooling for striplines: **0.4MW**
 - Hydrogen production: **0.3MW**
 - Power supply: 0.4Hz, 250kA

Necessity for upgraded horn system

- He vessel, Decay Volume & Beam Dump
 - Cooling: 4MW(HV&DV), 3MW(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Acceptance of each component for high power beam

- Target
 - Mechanical: 0.75MW
 - Cooling: 0.75MW

Oyama-san'talk.

Horn

- Cooling for conductors: 1.85MW
- Cooling for striplines: **0.4MW**
- Hydrogen production: **0.3MW**
- Power supply: 0.4Hz, 250kA
- He vessel, Decay Volume & Beam Dump
 - Cooling: 4MW(HV&DV), 3MW(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Oyama-san' talk.

Horn Replacement Work

- Highly radioactive after several year running
 - $\sim 150 \text{mSv/h}$ for horn1 (6.7x10²⁰ POT exposure after 1year cooling)
- Remote handling is a key for horn replacement work.

Horn Replacement Work

- Replacement of horns was successfully done with remote handling.
 - Remote handling for T2K horns were established.

Contents

- Introduction
- Overview of Horn Replacement Work
- Operation results after horn upgrade
- Summary

Operation History

- Stable operation at 230kW
 - 1.2x10¹⁴ ppp: world record of extracted protons/pulse for synchrotron
- Accumulated POT so far: 7.39x10²⁰
 - 0.51x10²⁰ in anti-neutrino mode operation.

Highlight in T2K Run5

- Horn operation with inverse polarity successfully done.
 - Horn polarity change scheme was established.
 - No significant difference in horn current and magnetic field between normal and reverse modes.
 - Very stable operation during Run5 period.

Highlight in T2K Run5

- Physics run with anti-neutrino mode for three weeks.
 - 0.51x10²⁰ POT accumulated in anti-neutrino mode.
 - Very stable beamline operation was achieved.

First event @ SK in anti-v mode

First anti-v event @ND280 in anti-v mode

- Acceptance of each component for high power beam
 - Target
 - Mechanical: **0.75MW**
 - Cooling: **0.75MW**
 - Horn
 - Cooling for conductors: 1 85MW
 - Cooling for striplines: **0.4MW**
 - Hydrogen production: U.3MW
 - Power supply: 0.4Hz, 250kA

These components limit the beam power

- He vessel, Decay Volume & Beam Dump
 - Cooling: 4MW(HV&DV), 3MW(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Stripline Cooling

Heat load at striplines

- Non-negligible heat load: beam heating + Joule heating
- Stripline duct covers striplines + forced helium flow

Problem at old horns

- Large amount of He gas leaked at stripline remote joints
 - No effective cooling expected.
 - → only natural convection assumed.
 - → Beam power is limited to 400kW.
- Stripline ducts were drastically improved.
 - No leak around stripline joints.
 - He cooling should be improved.

Stripline Cooling

- · Actual He flow rate was measured with new horns.
 - 16m³/min with current setup
 - Not enough for $750 \text{kW} \rightarrow 26 \text{m}^3/\text{min}$ is needed.
- If we add another helium compressor,
 - Flow rate will be $34\text{m}^3/\text{min.} \rightarrow \sim 1\text{MW}$ is acceptable.
 - Dual compressors should be setup before upgrade to 750kW.
 - A spare compressor exists → installation and plumbing needed.

- Acceptance of each component for high power beam
 - Target
 - Mechanical: **0.75MW**
 - Cooling: **0.75MW**
 - Horn
 - Cooling for conductors: 1.85MW
 - Cooling for striplines: 0.4MW
 - Hydrogen production: 0.3MW
 - Power supply: 0.4Hz, 250kA

These components limit the beam power

- He vessel, Decay Volume & Beam Dump
 - Cooling: 4MW(HV&DV), 3MW(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Hydrogen Production in Horn Firm

- H₂ production by water radiolysis $(2H_2O \rightarrow 2H_2 + O_2)$
 - H₂ production rate: 40L/day (0.7%/day) @750kW
 - H_2 must be removed. \rightarrow H_2 recombination $(2H_2+O_2\rightarrow 2H_2O)$

Hydrogen Production in Horn Firm

• Problem before horn replacement

- No forced He circulation inside horns
- H₂ density after 1 week 220kW beam.
 - 1.6% in horns (produced~1.5%) \rightarrow No H₂ removal.
 - 1.0% in tank \rightarrow recomb. doesn't proceed due to a lack of O_2 .

Hydrogen Production in Horn Firm

- Forced circulation inside horns
 - Small H₂ density with rich O₂
 - Recombination doesn't proceed due to a lack of O₂.
 - Low O_2 density due to larger O_2 solubility than H_2 .
 - Need some countermeasures for reliable operation.

- Acceptance of each component for high power beam
 - Target
 - Mechanical: **0.75MW**
 - Cooling: **0.75MW**
 - Horn
 - Cooling for conductors: **1.85MW**
 - Cooling for striplines: **0.4MW**
 - Hydrogen production: 0.3MW
 - Power supply: 0.4Hz, 250kA

These components limit the beam power

- He vessel, Decay Volume & Beam Dump
 - Cooling: 4MW(HV&DV), 3MW(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Horn Power Supply

- · New power supply production for 1Hz operation,
 - Designed for 320kA operation
 - Energy recovery (~50% of stored energy recycled)
 - Low input load
 - One horn is operated with a power supply
 - Low impedance striplines are also developed
- Production was completed and already delivered.

Power Supply Commissioning J-PARC

- One of new power supplies was used in Run5.
 - 250kA operation
 - No problem due to PS happened at all during whole period.
 - Current stability originated from PS was within 0.1% (of 250kA).

• Three power supply operation for 1Hz

- Need 2 or 3 new compact transformers. (space is very tight)

Acceptance of each component for high power beam

- Target
 - Mechanical: **0.75MW**
 - Cooling: **0.75MW**
- Horn
 - Cooling for conductors: **1.85MW**
 - Cooling for striplines: $0.4MW \rightarrow \sim 1MW$ (with dual comp.)
 - Hydrogen production: $0.3MW \rightarrow \sim 0.75MW$ (but need modification)
 - Power supply: 0.4Hz, 250kA $\rightarrow 1$ Hz, 320kA (with new trans.)
- He vessel, Decay Volume & Beam Dump
 - Cooling: **4MW**(HV&DV), **3MW**(BD)
- Facility
 - Water disposal: **0.5MW**
 - Radio-active air: **0.5MW**

Summary

- All three old horns were replaced with the upgraded horns during a long shutdown between Run4 and Run5.
- Very stable beam operation during Run5.
 - -7.39×10^{20} POT so far
 - -0.51×10^{20} POT with anti-neutrino mode.
- Acceptable beam power is updated after new horn installation.
 - Some components can be improved but some additional works should be needed.

Supplementary Slides

Neutrino Beamline

SK

Conventional neutrino beam

$$-p+C \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$$

- Designed for T2K experiment
 - High intensity beam
 - 750kW proton beam (30 GeV, 3.3x10¹⁴ protons/pulse)

Decay Pipe

Horns

Target

- Off-axis beam $(2\sim2.5^{\circ})$
 - Narrow band beam ~ 0.6 GeV
 - 1st oscillation maximum

H

5th Open Meeting for Hyper-Kamiokande Project

Target

Remote maintenance

 $\Delta T \sim 200 \text{K} \sim 7 \text{MPa}$ (Tensile strength 37MPa)

Magnetic Horns

• Aluminum alloy conductor (A6061-T6)

- Double cylinder (inner: t3mm, outer: t10mm)
- − Tensile strength: $310\text{MPa} \rightarrow 95\text{MPa}$ after $5x10^8$ cycle
- 25MPa allowable stress (taking into account corrosion)
- Safety factor ~ 2

320kA pulsed current (rated)

- 2.1 T (max.) toroidal field
- − 2~3ms pulse width
- 0.4Hz rep. rate \rightarrow 1 Hz for 750kW

Water cooled

- Total heat load: 25kJ @ 750kW
 - 15kJ (beam) + 10kJ (Joule)
- Spraying water to inner conductor

Decay Volume & Beam Dump FI-PARC

Decay Volume

- 100m-long
- Water cooled iron walls → 4MW
- − 2~2.5° OA angle for SK and HK

Beam Dump

- Graphite core
- Water cooled → 3MW

Designed for multi-MW beam since no access is possible after beam operation due to irradiation.

