LEDs as Pulsed Light Sources

Neil McCauley

LED Pulsers

Use an LED rather than a laser as a light source.

Advantages

- Cheap per channel cost. (~£10 for LED and basic driver electronics)
- Compact device possible
- Stable wavelength distribution ~ 10 nm spread
- Wide range of wavelengths available
- o ~1-2 ns pulses.
- Simple coupling to fibres

Disadvantages

- Higher current requirements
- Large light loss into fibres.

Questions

o Can we produce the required dynamic range?

ANTARES Beacon

- Developed to provide a light source on each ANTARES photo-module.
- Permanently deployed.
- Can flash single or multiple LEDs at once, depending on calibration required
 - o Different systems to do this.
- Not fibre coupled.

Basic design of ANTARES system

- Use a modified Kapustinki design.
- Discharge a capacitor into LED.
- Uses a fast 2 transistor switch.
- Inductor to "sweep out" charge.
 - o Reduced tail.

LEDs in SNO+

LEDs for HK

- We propose that LEDs form part of the HK calibration system.
- General light source for optical calibration
- Using fibres can build an automated system with can illuminate every PMT with known pulses.
 - PMT calibrations and water quality monitoring without source deployment.
 - Useful given 10 optically separated compartments in HK
- Uniquely able to measure scattering with such as system.
- Light source for a psedo muon light source.

UK Proposal to STFC

- In May we submitted our proposal for funding for the next 3 years.
- WP4 is calibration
 - Neil McCauley (Liverpool) Manager
 - Lee Thompson (Sheffield) Deputy Manager
- Liverpool, Sheffield, Warwick, Imperial College, Edinburgh and Queen Mary will contribute.

WP4

- WP 4.1 Fibre Coupled LED Pulsers
 - o LED Drivers
 - LED Fibre Coupling and Housing
- WP 4.2 Fixed point diffuser
 - Light injection into detector from fibre
- WP 4.3 Pseudo Muon Light Source
 - Muon Calibration device

Requests

- 1.5 Post Docs for 2 years from Sep 2015
- Engineering Support
- Hardware
- Most money turns on from Sep 2015 if approved
- Proposal being considered by STFC.

LED Driver Status

- Starting preparation of prototype circuit.
 - Will contain 2 driver circuit types
 - Quad Mossfet
 - Modified Kapustinsky
- Final circuit design in preparation for manufacture.
- Plan to control using FPGAs to provide detailed control of the circuits and their properties.
 - Part of a phase 2 prototype once circuit performance has been established.

Driving LEDs

- Quad Mossfet design
- Drive large currents with swift voltage change.
- Co-ordinate raising and lowering voltages at either end of the LED to produce a fast high current pulse.
- Dual Mossfets are used in DC-DC converters for solar panels
 - Some are suitable for high frequency.

LED Testing

- We have started testing a sample of LEDs in the lab at Sheffield.
 - Not all LEDs will pulse, we need to identify suitable candidates.
 - Currently using ANTARES pulser, also plan to test SNO+ pulser.
- Testing underway:
 - o Results soon

LED – Fibre coupling

- We need to use graded index fibre
 - More expensive
 - Smaller core
- Dispersion using step index fibre would be ~14 ns over 100 m.
 - o Too large for HK.
- Need to investigate:
 - o coupling with these fibres due to small core (\sim 60 μ m diameter).
 - Actual dispersion of pulses over a long distance
 - Angular profile and timing correlation.

Monitoring Ideas

- We want to monitor light output pulse by pulse
- Two ideas under consideration
 - Instrument the LED fibre coupling housing
 - Direct monitoring of light that does not make it into the fibre
 - Pulse by pulse intensity.
 - o Return fibre
 - Allows pulse timing measurement including fibre effects.
 - Monitoring of a small number of photons.
- Starting to consider the design
 - Readout for MPPCs to be included in prototype circuit.

Overall system

A psedo muon source

- A source to simulate muons and test reconstruction.
- A narrow transparent tube with a light source producing almost parallel light at one end.
- Light emitted at the Cherenkov angle.

As $\theta_1 \rightarrow 90^\circ \sin(\theta_2) \rightarrow 1/n_c$

Light emitted at Cherenkov angle.

Summary

- Calibration forms a part of the HK grant request in the UK.
 - Should hear the result of this application over the summer.
- Work is starting on the development of the LED driver for HK.
 - Circuit design
 - o LED testing