WCsim and BONSAI reconstruction tool

T. Yano Kobe University

21th Jul. 2014 5th Hyper-Kamiokande Open Meeting

Motivation of this study

Motivation

- To study the capability of Hyper-Kamiokande at low energy with BONSAI.
 - BONSAI reconstruction algorithm have been used for SK low energy analysis.
 - ~ 3 MeV to a few tens MeV is the target range of BONSAI.

What is BONSAI?

BONSAI:

- Low energy vertex reconstruction algorithm has been used for all SK period, including SK-II.
- Well-tested, reliable and scalable.
 - Maximum
 Likelihood
 method
 - Using PMT hit timing and charge information.

$$\Delta t_i(\vec{x}) = t_i - \text{tof}_i(\vec{x}) - t_0$$

$$L(\vec{x}, t_0) = \log\left(\prod \text{pdf}(\Delta t_i(\vec{x}))\right)$$
Ref: M. Smy at NOW2006
$$10^{-1}$$

$$10^{-2}$$

$$10^{-3}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-1}$$
Timing Likelihood

Status of Bonsai with WCsim

Status

- First version of bonsai-ROOT interface is made for WCsim ROOT output.
- This interface and original bonsai (coded in c++) are compiled into a shared library, which is readable from ROOT.
- Temporary, this interface is named "libWCSimBonsai".

WCsim+BONSAI flow chart

WCsim executable

WCsim ROOT output

Hit info. PMT ID, T, Q

PMT Geometry

Primary Track etc.

PMT Geometry TXT format

(Convert to geom.bin)

BONSAI

Reconstruction result: Vertex, Goodness, etc.

Configuration files from skdetsim

Fit parameters (Cherenkov angle etc,)

Timing Likelihood

libWCsimBonsai on ROOT

WCsim + BONSAI demonstration

WCsim: Super-K Mode

No. of PMTs: 11146

ID: 11146, OD: 0 (for SK mode)

WCsim: Hyper-K Mode

No. of PMTs: 11995

ID: 9870, OD: 2125

1000 shots of 3 – 30 MeV electron. Pos: (0,0,0), Dir: (1,0,0)

Reconstruction Result

Z[cm]

Example figures

Red: WCsim Super-K mode

Blue: WCsim Hyper-K mode

Source particle : electron

Source energy : 11 MeV

Source position: (0,0,0)

Source direction: (1,0,0)

Dark rate : **5.8 kHz**

Bonsai works well with WCsim and root. It successfully reconstructs events.

The vertex resolution of Hyper-K mode is worse than Super-K mode, as expected.

goodness

Vertex resolutions

Three-dimensional Vertex resolution of WCsim HK and WCsim SK are compared.

The vertex resolution of WCsim SK⁵ and WCsim HK with BONSAI are ~50% larger than skdetsim ones. The relation between vertex resolution and energy is similar for these cases.

The vertex resolution and other characteristics of one Hyper-K compartment is expected to be similar to SK-II. We need more tuning for further studies.

Next Tuning libWCsimBonsai

WCsim executable

Optimization for WCsim, new photo detectors and Hyper-K geometry.

Configuration files from skdetsim

Fit parameters (Cherenkov angle etc,)

Timing Likelihood

PMT ID, T, Q

Hit info.

PMT Geometry

Primary Track etc.

libWCsimBonsai on ROOT

BONSAI

Tuning for HK

Reconstruction result: Vertex, Goodness, etc.

Summary and Discussion

- First version of BONSAI-ROOT interface is made for Hyper-K low energy reconstruction.
 - "libWCSimBonsai" ROOT library.
- libWCSimBonsai is tested with SK and HK mode of WCsim.
 - It is promising first attempt, but more tuning is needed for Hyper-K.
- For energy calculation, we need other libraries from SK software.
 - e.g. compensation for PMT occupancy, dark rate, effective PMT density, water transparency. They will be ported from SK software.
- The contribution of higher QE photo detector for low E and that
 of the detector design (e.g. partition size) will be studied.

Summary and Discussion

libWCSimBonsai

Implementation of libWCSimBonsai

- Because bonsai itself is written in C++, we can compile bonsai with rootcint. If we have a interface, we can use current bonsai with small modification.
- Parameters to be tuned:
 - PMT position (geom.bin. A small separated program to convert geofile.txt -> geom.bin is made.)
 - Fitting parameter (fit_param.dat. This file defines the angle of Cherenkov ring and the reconstruct position limit as distance from wall.)
 - Timing likelihood (like.bin. This defines the PDF for PMT detection time distribution of Cherenkov lights.)
 - Because fitting parameter and likelihood is based on physics, only PMT position is updated for WCsim currently.