

Accelerator Design & Modeling for the Decay-at-Rest Neutrino Experiment DAEδALUS

Daniel Winklehner, MIT/PSI

Hyper-K Meeting, Vancouver, 07/20/2014

DAEδALUS Collaboration

USA:

Amherst College

Columbia University

Duke University

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

Massachusetts Institute of Technology*

Michigan State University*

New Mexico State University

University of California, Berkeley (Nucl. Eng.)

University of California, Irvine

University of California, Los Angeles

University of Maryland*

University of Tennessee

<u>International:</u>

University of Manchester*

University of Huddersfield*

Imperial College London*

LNS-INFN (Catania)*

Paul Scherrer Institut*

RIKEN*

Tohoku University*

Industry:

AIMA*

Best Cyclotron Systems, Inc.*

IBA*

Sumitomo Heavy Industries*

Very Active – Ramping Up – Low Level, but interested

* group includes experienced accelerator scientists

Decay At rest Experiment for δ_{cp} studies At a Laboratory for Underground Science

THE DAEδALUS CONCEPT

$\mathsf{DAE}\delta\mathsf{ALUS}$ – Three Accelerator Concept

DAEδALUS Neutrino Production

- Use Pion/Muon decay-at-rest induced by 800 MeV protons for neutrino production, virtually free of $\overline{\nu}_e$
- Use inverse beta decay (IBD) to measure \overline{v}_e appearance
- Need detector with large number of protons (free hydrogen): Liquid Scintillator or Gd doped water Cherenkov detector

F**luX** [Arb. units]

Distinguish between sites by timing

- Daeδalus has good CP sensitivity as a stand-alone experiment.
 - Small cross section, flux, and efficiency uncertainties

Distinguish between sites by timing

- Daeδalus has good CP sensitivity as a stand-alone experiment.
 - Small cross section, flux, and efficiency uncertainties
- 40% of "beam-off" leave enough time to measure signal from long baseline experiment \rightarrow DAE δ ALUS can be combined with long baseline v-only data to give enhanced sensitivity, i.e. Hyper-K
 - Long baseline experiments have difficulty obtaining good statistics for $\nu_{\mu} \rightarrow \nu_{e}$ which DAE δ ALUS can provide
 - Daeδalus has no matter effects and can help remove ambiguities.

Predicted Uncertainties, 10 Years Runtime

How to provide the 800 MeV protons?

The 4 Phases of DAE δ ALUS

Can we use the injector cyclotron alone?

The 4 Phases of DAE δ ALUS

...A selection of

ACCELERATOR LAYOUT & CHALLENGES

Reminder: One DAEδALUS complex

Beam Power Comparison

Challenge: Extraction

- "Classical" with Septum
- Requires extreme beam stability
- Need good turn separation
- Need to play with resonance to increase turn separation
- PSI (2.2 mA) has 99.98% efficiency, still loses 200 W of beam on septum
- Upper limit for hands-on maintenance (activation)
- No good for 10 mA beam

Challenge: Space Charge

Space charge acts defocusing on the beam

Beam Potential from Space Charge

• Space charge potential of a uniform and round beam with beam radius r_b in a grounded beam pipe r_p :

$$\phi(r) = \begin{cases} \Delta \phi \left(1 + 2 \ln \frac{r_p}{r_b} - \frac{r^2}{r_b^2} \right) & \text{for } r \le r_b \\ \Delta \phi & 2 \ln \frac{r_p}{r} & \text{for } r_b \le r \le r_p \end{cases}$$

- Problem for high I and low v
- Transport line from source to 1st cyclotron (LEBT)
- Injection into 1st cyclotron (Spiral Inflector)

Solution: Accelerate H₂⁺

- 2 protons for each charge state
- Reduces Space Charge in LEBT and Spiral Inflector
- Can do stripping extraction in Superconducting Ring Cyclotron for DAEδALUS
- Challenges:
 - Ion Source? Microwave or Multicusp
 - Vibrational States

OPAL Architecture

http://amas.web.psi.ch

- OPAL Object oriented Parallel Accelerator Library
- IPPL Independent Parallel Particle Layer
- H5Hut parallel particle and field I/O (HDF5)

Source + Transport + Cyclotron

DC Beam from realistic LEBT simulation

Simulation including full space charge pending...!

Status of Injector Cyclotron (DIC)

- Iron and Magnet design by LNFN Catania, good single particle tracking (OPERA)
- OPAL simulation including space charge and inter-bunch effects for gaussian bunch
- Missing: Spiral inflector and connecting results from SI to
- Tests of Injection ongoing at this moment here in Vancouver at Best Cyclotron Systems, Inc.

Status of Supercon. Ring Cyclotron (DSRC)

- Iron and Magnet design by LNFN
 Catania, good single particle tracking
 (OPERA)
- Coil and Cryo design by PSFC @ MIT:
 - Engineering design,
 - Assembly Plan,
 - Structural analysis,
 - Cryo system design
- Full OPAL simulation of previous 8sector design. Actual 6-sector pending...
 - ... But: Very similar to RIKEN design!

RIKEN Superconducting Ring Cyclotron

Conclusion: DAE SALUS is...

- ...A phased program to develop decay-at-rest neutrino beams,
- ... Using Cyclotrons as the drivers.
- ...An exciting new resource for neutrino physics, that also overlaps with interests in:
 - Nuclear Engineering (ADS)
 - Medical Isotope Production
- ...Moving forward on most fronts!
- Next Steps:
 - Spiral Inflector tests in Vancouver (July/August) Happening Now!
 - Full Start-To-End simulations including Space Charge using OPAL
- As an aside: DIC Prototype (IsoDAR) possibly installed at KamLAND