Hyper-K site and cavern

Hide-Kazu TANAKA (ICRR) for HK cavern & tank WG

5th HK Open Meeting at TRIUMF/UBC, July 21st, 2014

Outline

- Brief overview of Tochibora-site studies
- Status of Mozumi-site studies
- Summary

Status of HK cavern design

- Two candidate sites; Tochibora and Mozumi
- Tochibora-site
 - Geological surveys
 - Geological logging of existing tunnels/shaft and rock sampling
 - Cavern stability analyses based on the survey
 - Cost estimates and construction schedule evaluated
 - Baseline design has been (basically) completed
- Mozumi-site
 - Almost no geological information available in the past
 - Geological surveys carried out in 2013
 - Cavern stability analyses have been completed

Overburden

| 1,369m a.s.| | Mozumi-site | Mozumi-site

- Overburden
 - Tochibora: ~650m
 - Mozumi: ≥700m

Tochibora-site studies brief overview

Geological survey

Rock mass characterization Initial stress measurement

B-class: 4.5% CH-class: 71.3% CM-class: 24.2%

 Rock class distribution & initial stress at the HK tank location used in the cavern stability analyses

Cavern stability analysis

Initial stress

- Based on the survey results (rock mass characteristics and initial stresses), structural stability of caverns has been studied
- Elasto-plastic, static analysis & adopt Hoek-Brown yield (failure) criteria
- The excavation-steps taken into account in the stability analyses
- Include the cavern supporting material: shotcrete, rock-bolt, and Pre-Stressed (PS) anchor

Cavern stability

Plasticity region depth PS-anchor tension

CH-class (>70% at HK location)

CM-class (20~30% at HK location)

- Plasticity region ~I3m at most (CM class) → affordable level
 - Proved in the existing underground facilities (ex. power plants)
- For all rock mass classes (B, CH, CM), HK caverns can be constructed by the existing excavation/support techniques.

Tunnel constructions

- Tunnel construction plan (basically) established
 - Access-, approach-, and belt conveyor tunnels

Construction schedule 数量 3年度 4年度 項目 1. マイルス ├─ン 2. 主要工事工程 坑口仮設備 2.17クセス坑道 ・吹き付けバッチャープラント ・ヤード造成、既存設備撤去 ·修理工場、休憩所 施工済み予定区間 569. 304.6m \ 984.4m 2.1.1新規区間 施工済み予定720m (1289.0)2.1.2追切区間① 275.0 舗装2.6ヵ月 835.9 2.1.3追切区間② 6.3月(835.9m) 2.277゚ローチ坑道 アーチ作業坑 617.8 200.0 取付坑道 ①、③ 196.0 m 2.2.1 1段目 ④0.6月 アーチ中央坑道 413.9 m 観測坑道 527.0 52.7m×10坑道 4.5月 0.7月 中央坑道 2.2月 \$06m) 2.2.2 2段目 629.2 1.52月 163 4m 2.2.3 3段目 93.4 +空ずりピット 50: 571.6 水槽・ずりピット進入路 2.2.4 4段目 機械組立坑道 49.7m×9坑道 2.2.5 ずり運搬立坑 2.2.6 ずりピット 巾27m×高さ9m×長さ50m 2.4 ベル トコンベア坑道 準備工 円山跡地道路整備 -370~ -200 BCT 坑口仮設備(200坑道) - 準備工 ・吹き付けバッチャープラント ロンクリートモーヒ゛ル) ·修理用部品倉庫、休憩所 坑道掘削(下り) 1242.4 0~ -200 BCT 坑口仮設備 ()メートル坑道) ・吹き付けバッチャープラント ・排水タンク設置、配管 ・ヤード造成、既存設備撤去 ·修理用部品倉庫、休憩所 貫通まで休止2.0カ月 (円山直送) 坑道掘削 下り) 掘削 0.2月 ***** ~230BCT 坑口仮設備 230メートル坑道 掘削 11.0月 計15.0カ月 坑道掘削 止り) 1676.7 m 坑道掘削 (下り) 掘削 2.0月(円山) ベルトコンベアー設置工 純水装置室 2.3水槽空洞 北側水槽空洞 南側水槽空洞

Construction steps and schedule established

Mozumi-site studies status

Mozumi-site

- Candidate site locates under Mt. Ikenoyama
- HK deck level: EL356.6m (-500mL in mine coordinate)
 - The same as SK deck level
- Overburden: ≥700m (cf. Tochibora-site: ~650m)
- No detailed geological survey in the past

Geological survey at Mozumi

- Geological survey at Mozumi-site has been carried out in 2013
 - Rock core samplings at -500mL (-500mL=SK deck level)
 - (I) 250m long drilling with 27mmφ
 - for rock mass characterization at candidate site
 - (2) ~14m (in total) drilling with 50mmф
 - for rock 'pressure crack' testing / measurement
 - Mapping of the existing tunnels

Rock core sampling (I)

- 250m long rock sampling at HK tank location
 - Core size: φ27mm

Summary of the results (I)

Mozumi-site

cf. Tochibora-site

		Fraction of rock class				(%)	備考	
		A	В	СН	$\mathbf{C}\mathbf{M}$	CL	D	/HI 7 5
North cavern	北側水槽	0.0	0.0	71.8	28.2	0.0	0.0	
		71.8		28.2				
South cavern	南側水槽	0.0	9.0	70.7	20.3	0.0	0.0	
		79.7		20.3				
Average	計	0.0	4.5	71.3	24.2	0.0	0.0	
		75.8		24.2				

Rock quality at Mozumi-site is comparable with Tochibora-site.

- Use for pressure crack test/measurement
- 10 core samples; I~2m long core each
- Rock cores sampled at a different location from HK tank (~800m away) but rock type is identical to where we are interested in.

Rock strength

based on pressure crack testing results

Mozumi-site → : B-class — : CH-class — : CM-class

Tochibora-site : B-class : CH-class : CM-class

- Rock strength at Mozumi-site: B-class is lower,
 CH-class (majority) is almost equal, and CM-class is higher than Tochibora-site
- Use as an input for cavern stability analysis.

Initial stress at Mozumi-site

- The initial stress, which has been measured at SK site, is used in Mozumi-site cavern stability analyses
 - No measurement at HK cavern location yet.

Initial stress comparison

Mozumi-site

Stress Components	Initial Stress (MPa)				
σ_{x}	15.23				
σу	9.69				
σ_{z}	23.12				

Tochibora-site

Stress Components	Initial Stress (MPa)				
σ_{x}	8.10				
σ _y	12.42				
σ_{z}	16.31				

 σ_x : Horizontal, σ_y : Cavern axis, σ_z : Vertical

• Mozumi has higher σ_z than Tochibora due to larger overburden

Plasticity region depth

Tochibora

Mozumi

Tochibora

Mozumi

 Plasticity region depth in CH-class at Mozumi is slightly deeper than Tochibora

Supporting pattern

Tochibora

Mozumi

Tochibora

Mozumi

CM-class (20~30% at HK location) FLAC3D 4.00

 Confirmed that the cavern can be constructed at Mozumi-site with the existing technology.

On-going work

- Cavern stability analyses just completed
- Access- and approach-tunnels are being designed
- Rock waste transportation to Maru-yama from Mozumi-site is under design
 - Belt conveyor in tunnels or possibly on surface?
- Construction cost and schedule will follow
- Mozumi-site baseline design will complete reasonably soon
- Cavern construction is the major cost driver in HK project, and continue seeking ways to reduce the cost
 - Move the detector to a better rock quality location??

Summary

- Tochibora-site baseline design for the cavern construction has been established
 - Including the detailed construction procedure
- Mozumi-site
 - Geological surveys have been carried out
 - Cavern stability analyses completed and confirmed that the cavern can be constructed with existing technology
 - Construction procedure/schedule/cost evaluations are in progress
- Need detailed survey/study of Maru-yama, rock waste disposal place, regardless which site will be
 - To confirm the capacity & to identify necessary pretreatments (and estimate the cost)