

Short and long baseline sensitivities with vPRISM

Mark Scott 5th Open Hyper-K Meeting July 22nd 2014

Off-axis Angle (°)

vPRISM Concept

Different off-axis angles see different neutrino fluxes

 Further off-axis → Narrower energy distribution, lower peak energy

E_v (GeV)

Gaussian beams

Arb. Norm.

 E_{v} (GeV)

Can combine angular slices to create desired neutrino flux

Build a Gaussian neutrino flux!

Oscillated beam

 Can combine different angular slices to recreate the oscillated SK spectrum

- 4° and 1.5° flux give the low and high energy peaks at SK
- Subtract the 2.5° flux to create the oscillation dip

vPRISM Design

Baseline design used in the oscillation studies

- 3m radius inner detector
- 52.5m tall spanning 1-4 degrees off axis
- 1km from neutrino target
- vPRISM-lite:
 - Instrument 14m movable cylinder
 - Take data at different off-axis angles over run
 - Studies assumes 4.5 x 10^{20} POT in each offaxis slice of vPRISM

ν_μ Disappearance Analysis

- Event selection
- vPRISM predicted SK spectrum
- Systematic uncertainties
- Statistical uncertainties
- Oscillation fit
- Effect of multi-nucleon events

Event Selection

- Same event selection as at SK:
 - Single ring
 - Muon-like
 - Fully contained in fiducial volume

Record the off-axis angle of the interaction, using the reconstructed vertex position

SK prediction

• Use vPRISM technique (linear combinations) to create the SK neutrino flux assuming a given set of oscillation parameters

Provides a set of weights for the different off-axis slices of vPRISM

SK prediction

- Apply these weights to the selected events in each off-axis slice of vPRISM
- Now looking at reconstructed neutrino energy events smeared into oscillation dip by nuclear effects and energy resolution

- To vPRISM data:
 - Background subtraction
 - Efficiency correction
 - Addition of selected SK background
- Introduce some model dependence

Systematic uncertainties

- Every correction made to the vPRISM prediction is calculated from our nominal MC – all are constant corrections
- To calculate systematic uncertainties:
 - Apply a variation to the vPRISM and SK MC
 - Changes number of selected events at both detectors
 - Apply corrections (from the unvaried, nominal MC)
 - Calculate change in the vPRISM prediction
 - Use this to calculate fractional covariance matrix for vPRISM prediction
- This analysis takes flux and cross section uncertainties into account
 - Conservative detector systematics coming soon!

Flux uncertainty

- Flux uncertainties calculated in same ways as for T2K, evaluated at 1km
- Fractional error on left, correlation matrix on right

- Larger errors at high energy no vPRISM events
- Error at oscillation dip around 4-5%

Flux and XSec uncertainty

- Xsec uncertainties should largely cancel at vPRISM amount of cancellation depends on how well flux combination matches SK flux
- Need to throw flux and cross section uncertainties together

 Combined flux and cross section uncertainty around 5% at the oscillation dip

- Potential to be large due to linear combination
- Smooth linear combination variations in neighbouring slices cancel out to large extent

 Total uncertainty on the predicted event spectrum at SK, including statistical and systematic sources

- Total uncertainty is <10% at oscillation peak
- ~7% statistical, 6% systematic

Oscillation fit

• Calculate covariance matrix and ν PRISM prediction for various points in θ_{23} and Δm^2 phase space

-log(L) surface for nominal MC

- Use Simple Fitter to calculate likelihood (L)
- Plot ln(L) for all points in θ_{23} and Δm^2
- Minimum bin gives best fit oscillation parameters

Multi-Nucleon effect

- Add meson exchange current (MEC) interactions to the same vPRISM and SK fake data sets, using Nieves and Martini models
- Re-calculate vPRISM prediction of SK distribution do not change any of the corrections!
- Find the best fit oscillation point for each fake data set compare to best fit point without MEC

- Plots above show the result of the same analysis performed by T2K
- Using Nieves' MEC prediction on left, Martini mock up on right
- Both show ~3.5% spread, with a bias in the Martini case

Add multi-nucleon events to the nominal MC to make fake data

 See vPRISM prediction still reproduces oscillated SK spectrum when multi-nucleon events are present

Look at effect of adding MEC events to 300 fake data sets

- Much smaller RMS in $\theta_{_{23}}$ (left) and Δm^2 (right) than in T2K analysis
- No bias seen in θ_{23} plot
- vPRISM will provide the first data driven constraint on the effect of multi-nucleon events in oscillation measurements

Short baseline physics

vPRISM provides a unique opportunity for short baseline oscillation

- Can create Gaussian neutrino beams with energies from 500MeV 1 GeV
- Study the energy dependence of oscillations with a known ν energy!

$\nu_{\rm e}$ appearance sensitivity

- Studied the vPRISM sensitivity for the v_e appearance case in the 3 + 1 sterile model J. Caravaca, J. Vo, S. Bordoni, F. Sánchez
- A shape + rate analysis performed in reconstructed neutrino energy and off-axis angle space
- Flux and cross section uncertainties taken into account
- χ^2 test used to determine the allowed regions of parameter space
- A conservative approach:
 - Using full flux and cross section uncertainties
 - Just use raw off-axis angle
 - Using SK reconstruction efficiencies and fiducial volume cuts
 - No combined $v_{_{e}}$ / $v_{_{\mu}}$ fit

v_{e} selection

- Require > 2m between the reconstructed vertex position and the wall of vPRISM (dWall)
- Require > 200MeV of visible energy
- Require > 3.2m distance to the vPRISM wall in the lepton direction (toWall)

v_e signal template

- Take selected $v_{\rm e}$ background events
- Reweight to the $v_{_{\perp}}$ flux
- Apply the 3 + 1 oscillation probability

$$P(\nu_{\mu} \to \nu_{e}) = P(\nu_{e} \to \nu_{\mu}) = 4|U_{e4}|^{2}|U_{\mu 4}|^{2}\sin^{2}\left(1.27 \,\Delta m_{41}^{2} \frac{L}{E}\right)$$
$$\sin^{2}(2\theta_{e\mu}) = 4|U_{e4}|^{2}|U_{\mu 4}|^{2}$$

Unoscillated ve events in FV

Final sensitivities

- v_{a} fiducial volume cut is harsh reduces statistics considerably
- Show two cases 3m radius vPRISM and 4m radius

- Majority of MiniBooNe allowed region is covered in both cases
- Larger radius (or better FV cuts) greatly increases sensitivity

Summary

- vPRISM gives direct information about the neutrino energy
- Can remove bias from unknown nuclear effects
- vPRISM will also reduce the effect of all cross section uncertainties

- Can perform short baseline oscillation searches as function of neutrino energy
- Conservative analysis
- vPRISM can exclude the MiniBooNe allowed region for a 3 + 1 sterile neutrino model

Backup slides

Building the oscillated flux

- All based on simulated neutrino flux at SK and vPRISM
- Slice vPRISM into 30 slices of 0.1 degree assign each a weight

• MINUIT χ^2 fit between sum of weighted ν PRISM slices and oscillated

Building the oscillated flux

Perform fit for all combinations of oscillation parameters used in the

Additive correction

- Final step additive correction
- Subtract selected SK spectrum from vPRISM prediction
- Add this difference to the vPRISM prediction
- If our MC exactly reproduces nature, $\nu PRISM$ prediction will exactly match selected SK spectrum

vPRISM corrections

- Every correction made to the vPRISM prediction is calculated from our nominal MC – all are constant corrections
- These corrections potentially introduce model dependence
- To calculate systematic uncertainties:
 - Apply a variation to the vPRISM and SK MC
 - Changes number of selected events at both detectors
 - Apply corrections (from the unvaried, nominal MC)
 - Calculate difference between selected SK events and vPRISM prediction
 - Use this to calculate fractional covariance matrix for vPRISM prediction

Flux uncertainty

- Flux uncertainties come from 26 sources
 - Proton beam alignment
 - Hadron production
 - Etc.
 - Expect to be independent of one another
- Can calculate a flux covariance matrix in two ways:
 - From each source separately, then combine in quadrature
 - Apply variation from each source at the same time and calculate a covariance for the entire flux uncertainty in one step
- These should give the same answer

Separate sources

 Oscillation analysis performed using 12 uneven bins in reconstructed neutrino energy – the 8 shown cover 0 – 3 GeV

Source by source flux covariance 8 bin 0.0055 0.0049 0.0041 0.0029 0.0020 0.0019 0.0020 0.0037 Reconstructed E_v 0.005 0.0032 0.0026 0.0037 0.0021 0.0022 0.0023 0.0025 0.0031 0.0045 6 0.0018 0.0015 0.0015 0.0023 0.0027 0.0031 0.0025 0.0020 0.004 5 0.0016 0.0025 0.0019 0.0014 0.0022 0.0027 0.0023 0.0035 4 0.003 0.0013 0.0014 0.0022 0.0022 0.0023 0.0022 0.0020 3 0.0025 0.0026 0.0021 0.0017 0.0014 0.0014 0.0015 0.0021 0.0029 0.002 0.0046 0.0039 0.0021 0.0015 0.0026 0.0041 0.0015 0.0055 0.0046 0.0026 0.0013 0.0016 0.0018 0.0032 0.0049 0 0 2 3 5 4 Reconstructed E, bin

Simultaneous variation

- Larger errors at high and low energy no vPRISM events
- Error at oscillation dip (bin 3) around 5%

Comparing flux uncertainty

Source by source matrix on left, simultaneous matrix on right

- Very good agreement between the two methods
- Confident flux uncertainties are being applied correctly

Flux and cross section

 When varying flux and cross section simultaneously the uncertainty in bin 3 (600 – 700 MeV) is 5.7%

Joint flux and cross-section covariance matrix

Systematic throws

Look at fake data throws of both flux and cross section uncertainties

- Plots show all 300 throws of the $\nu PRISM$ prediction (left) and selected SK events (right)
- νPRISM very few events at low or high energy, little variation
- In oscillation region variations similar at SK and vPRISM
- Spectra are ~Gaussian distributed about the central value

Systematic throws

Plot difference between selected SK events and ν PRISM prediction for each throw

- Most of spectrum shows less than 0.5 event difference between SK and $\nu PRISM$ prediction
- Systematic uncertainties are cancelling between the two detectors

- Potential to be large due to linear combination
- Original error matrix on right
 - almost 100% uncertainty

- Potential to be large due to linear combination
- Original error matrix on right
 - almost 100% uncertainty

- Fit coefficients:
 - Rapidly varying
 - Relatively large

Smooth linear combination – variations in neighbouring slices

 Smooth linear combination – variations in neighbouring slices cancel out to large extent

Nieves' result

 Look at the difference in best fit oscillation parameters between the nominal MC and the MC with additional Nieves MEC events

- Much smaller RMS in θ_{23} (left) and Δm^2 (right) than in T2K analysis
- Large spike at 0 difference in both plots

$\nu_{\rm e}$ systematic errors

- Use cross section and flux uncertainty throws to construct covariance matrix
- Each element corresponds to a single bin in the reconstructed energy and off-axis angle space

