

Outline

- Motivation
 - neutrino-nucleus interaction systematics
- Properties/Advantages of HPTPC
 - event rates
 - detection thresholds
- Status and next steps

Imperial College London

Motivation: xsec systematics

- Current T2K v_e appearance xsec systematics at ~8% level
- CPV sensitivity improved dramatically with 2% overall systematics
- Systematics driven by discrepancies between interaction models and data
- Need better models in generators, and better data for tuning models

HK CPV sensitivity

Cross-section systematics

- •Recent ν_{μ} CCQE data show low/high E_{ν} discrepancies
 - MiniBooNE/SciBooNE & NOMAD
- Explanation: multinucleon scattering—not simulated by neutrino interaction generator MCs
 - Not included in MINOS, MiniBooNE, early T2K publications
- Misidentified events are not reconstructed correctly results in biased E_v

arXiv:0910.2622[hep-ex

Effect on oscillation experiments

- Example: ν_{μ} disappearance with generic nuclear effects
 - Parameterise fraction of nuclear effects that are neglected
- Shifts the measured values of θ_{23} by 5° degrees and Δm^2_{31} by .05 eV²
 - Can change interpretation: true maximal mixing can appear as non-maximal
- Danger!
 - These effects do not cancel in near-far extrapolation
 - → Using the wrong model at near and far detector does not accurately simulate Nature

Coloma & Huber, arXiv:1307.1243 [hep-ph]

Growing Consensus

- We need broad coverage
 - Model independent measurements spanning full phase space (E_ν, Q²) and many nuclei
- Need sufficiently low energy thresholds for recoil nucleons to separate 1p1h from 2p2h events
 - Also need sufficiently good theoretical models to robustly predict spectra!
- Gas TPC provides unique opportunities to address issues

Basics of Gas TPC

F. Sanchez

- $\sim 4\pi$ coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

Baseline concept is 8 m³ magnetised volume with ND280 micromegas readout, surrounded by ECals with tracking down stream. *This configuration must be optimised.*

Presented at T2K ND280 upgrade workshop, NuInt14.

Not a new idea! Already explored by NF, LBNO, NuSTORM...

Properties of Gas TPC

- $\sim 4\pi$ coverage
- Easily magnetised
- → 3D reconstruction
- Target flexibility
- Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

Currently analysing ν_{μ} interactions on Ar gas in existing T2K data. P. Hamilton (Imperial), IOP HEP 2014 and NuInt14

- $\sim 4\pi$ coverage
- Easily magnetised
- 3D reconstruction
- **→** Target flexibility
- Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

Saturday, 19 July 14

EVENT RATES (SCALED FROM T2K ND280 RATES)

2x2x2 m ³ 20°C	5 bars	F. Sanchez 10 bars
He	6.65 kg	13.3 kg
	520 evt/10 ²¹ pot	1040 evt/10 ²¹ pot
Ne	32.5 kg	67.1 kg
	2543 evt/10 ²¹ pot	5086 evt/10 ²¹ pot
Ar	66.5 kg	I33 kg
	5203 evt/10 ²¹ pot	10406 evt/10 ²¹ pot
CF ₄	146.3 kg	293 kg
	11450 evt/10 ²¹ pot	22893 evt/10 ²¹ pot

Morgan O.

- $\sim 4\pi$ coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- → Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

LBNO near detector simulations.

T. Stainer (Liverpool), IOP HEP 2014

- \rightarrow ~ 4π coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- → Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

MUON ACCEPTANCE

Imperial College
London

HK Open Meeting

Wascko

- \rightarrow ~4 π coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- → Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

- ~4π coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- → Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

- fully reconstructed events with (only) 2 protons in final state.
- N_{CCQE+FSI} ~ N_{2p2h}
- Observables are sensitive to differences.

- $\sim 4\pi$ coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter

DIRECTIONAL DARK MATTER DETECTION

- $\sim 4\pi$ coverage
- Easily magnetised
- 3D reconstruction
- Target flexibility
- Low momentum particle detection threshold
 - Good for model discrimination, generator tuning
- Synergy with dark matter experiments

Imperial College

London

HK Open Meeting

Wascko

Imperial College

HK Open Meeting

Morgan O.

17

Conclusion / Path forward

- A high pressure gas TPC is an ideal instrument for disentangling neutrino interaction models and tuning interaction generators
 - Needed to get interaction systematics down to 2% level if we employ the conventional analysis approach
- Much work to be done!
 - Optimise detector design
 - Convert useful photons but reduce external backgrounds
 - Honest cost evaluation
 - Explore alternate readout technologies
 - Could provide low cost options

TPC concept

In the hypothesis of central cathode plane and contained in ND280 magnet, we will have ~ I m of drift distance

F.Sanchez, Near detector workshop 19th January 2014, Tokai

Motivation: unknown processes

- Presence of un-modelled processes in data sample affects extrapolation
- Effects exacerbated by different kinematics in each model
 - •Which one matches Nature??
- Changes neutrino energy reconstruction

•Near detector extrapolation cannot fix this even if it is identical to far 700 detector!

Imperial College

Saturday, 19 July 14

HK Open Meeting

-0.5

 $cos(\theta_{II})$

0.5

Morgan O.

400

300 200